scholarly journals Retraction Note: Molecular detection of pathogenic Escherichia coli strains and their antibiogram associated with risk factors from diarrheic calves in Jimma Ethiopia

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Destaw Asfaw Ali ◽  
Tesfaye Sisay Tesema ◽  
Yosef Deneke Belachew
2020 ◽  
Vol 8 (7) ◽  
pp. 1021 ◽  
Author(s):  
Samina Ievy ◽  
Md. Saiful Islam ◽  
Md. Abdus Sobur ◽  
Mithun Talukder ◽  
Md. Bahanur Rahman ◽  
...  

Avian pathogenic Escherichia coli (APEC) causes significant economic losses in poultry industries. Here, we determined for the first time in Bangladesh, the prevalence of APEC-associated virulence genes in E. coli isolated from layer farms and their antibiotic resistance patterns. A total of 99 samples comprising internal organs, feces, and air were collected from 32 layer farms. Isolation was performed by culturing samples on eosin–methylene blue agar plates, while the molecular detection of APEC was performed by PCR, and antibiograms were performed by disk diffusion. Among the samples, 36 were positive for the APEC-associated virulence genes fimC, iucD, and papC. Out of 36 isolates, 7, 18, and 11 were positive, respectively, for three virulence genes (papC, fimC, and iucD), two virulence genes, and a single virulence gene. Although the detection of virulence genes was significantly higher in the internal organs, the air and feces were also positive. The antibiograms revealed that all the isolates (100%) were resistant to ampicillin and tetracycline; 97.2%, to chloramphenicol and erythromycin; 55.5%, to enrofloxacin; 50.0%, to norfloxacin and ciprofloxacin; 19.4%, to streptomycin; 11.1%, to colistin; and 8.33%, to gentamicin. Interestingly, all the isolates were multidrug-resistant (MDR). Spearman’s rank correlation coefficient analysis revealed the strongest significant correlation between norfloxacin and ciprofloxacin resistance. This is the first study in Bangladesh describing the molecular detection of APEC in layer farms. Isolated APEC can now be used for detailed genetic characterization and assessing the impact on public health.


1999 ◽  
Vol 37 (8) ◽  
pp. 2719-2722 ◽  
Author(s):  
Sean D. Reid ◽  
David J. Betting ◽  
Thomas S. Whittam

A multiplex PCR was designed to detect the eae gene and simultaneously identify specific alleles in pathogenicEscherichia coli. The method was tested on 87 strains representing the diarrheagenic E. coli clones. The results show that the PCR assay accurately detects eae and resolves alleles encoding the α, β, and γ intimin variants.


2021 ◽  
pp. e299
Author(s):  
Diana Elizabeth Waturangi ◽  
Jason Petrus ◽  
Rico Kosasih ◽  
Felicia Roseline

Vibrio cholerae and pathogenic Escherichia coli were considered as main causative agent foodborne diseases especially in many developing countries, such as Indonesia. Thereby, rapid detection of these pathogenic bacteria is necessary to treat food-borne related diseases causing by these bacteria. In this case, multiplex PCR allows multiple genes amplification in one reaction thereby enable to perform rapid detection of these pathogenic bacteria. The objective of this study is to optimize uniplex and multiples PCR of V. cholerae and pathogenic E. coli detection and determine the sensitivity and specificity of this assays. We used various virulence genes for each pathogenic bacterium as markers for uniplex and multiplex PCR detection. Based on this research, the optimum results of V. cholerae and pathogenic E. coli were obtained with a primer concentration of 16 µM for ctxA and ompU, 30 µM for ace, and 50 µM for zot, and toxR; 2 µM for elt and 5 µM for stx, respectively. Finally, based on the standardization method by ISO/TS 20836 these assays had 0% false positive, 0% false negative, 100% specificity, and 100% sensitivity; 0% false positive, 4% false negative, 100% specificity, and 96% sensitivity for V. cholerae and pathogenic E. coli respectively. The optimized method was qualified to be used as a molecular detection for V. cholerae as well as EHEC and ETEC detection according to ISO/TS 20836 (2017)  from drinking water samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Destaw Asfaw Ali ◽  
Tesfaye Sisay Tesema ◽  
Yosef Deneke Belachew

AbstractDiarrheagenic Escherichia coli are a number of pathogenic E. coli strains that cause diarrheal infection both in animal and human hosts due to their virulence factors. A cross sectional study was conducted between November, 2016 and April, 2017 to isolate and molecularly detect pathogenic E. coli from diarrheic calves to determine the pathogenic strains, antibiogram and associated risk factors in Jimma town. Purposive sampling technique was used to collect 112 fecal samples from diarrheic calves. Conventional culture and biochemical methods were conducted to isolate E. coli isolates. Molecular method was followed to identify virulence factors of pathogenic E. coli strains. Antimicrobial sensitivity patterns of the isolates were tested using the Kirby–Bauer disk diffusion method. A structured questionnaire was also used to collect information from dairy farms and socio-demographic data. The overall isolation rate of E. coli in calves was 51.8% (58/112) (95% CI 42.0–61.0). The occurrence of the bacterium differed significantly by age, colostrum feeding time, amount of milk given per time and navel treatment (P < 0.05). Multivariable analysis revealed that the odds of being infected was significantly highest in calves which fed 1–1.5 L amount of milk per a time (OR 5.38, 95% CI 1.66–17.45, P = 0.005). The overall virulence genes detection rate was 53.5% (95% CI 40.0–67.0). Eleven (19.6%) of eaeA, 6 (10.7%) of Stx1 and 13 (23.2%) of Stx2 genes were detected from calves isolates. Except ciprofloxacillin, all isolates were resistant to at least one drug. Multi drug resistance was recorded in 68.0% (38/56) of calves isolates. Neomycin, 83.3% (25/30), followed by amoxicillin, 53.3% (16/30) were the highest resisted virulence genes. The study demonstrated considerable isolation rate, multiple antimicrobial resistant isolates and high resistant virulent genes in diarrheic calves. It also indicated that the potential importance of calves as source of pathogenic E. coli strains and resistant genes for human diarrhea infection. Improving the hygienic practice of farms and wise use of antimicrobials could help to reduce the occurrence of pathogenic E. coli in farms. Hence, further studies are needed to describe all virulent factors and serotypes associated with the emergence of drug resistant pathogenic E. coli strains in calves.


Sign in / Sign up

Export Citation Format

Share Document