scholarly journals Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paula J. Gómez-González ◽  
Joao Perdigao ◽  
Pedro Gomes ◽  
Zully M. Puyen ◽  
David Santos-Lazaro ◽  
...  

AbstractTuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest infectious diseases worldwide. Multidrug and extensively drug-resistant strains are making disease control difficult, and exhausting treatment options. New anti-TB drugs bedaquiline (BDQ), delamanid (DLM) and pretomanid (PTM) have been approved for the treatment of multi-drug resistant TB, but there is increasing resistance to them. Nine genetic loci strongly linked to resistance have been identified (mmpR5, atpE, and pepQ for BDQ; ddn, fgd1, fbiA, fbiB, fbiC, and fbiD for DLM/PTM). Here we investigated the genetic diversity of these loci across >33,000 M. tuberculosis isolates. In addition, epistatic mutations in mmpL5-mmpS5 as well as variants in ndh, implicated for DLM/PTM resistance in M. smegmatis, were explored. Our analysis revealed 1,227 variants across the nine genes, with the majority (78%) present in isolates collected prior to the roll-out of BDQ and DLM/PTM. We identified phylogenetically-related mutations, which are unlikely to be resistance associated, but also high-impact variants such as frameshifts (e.g. in mmpR5, ddn) with likely functional effects, as well as non-synonymous mutations predominantly in MDR-/XDR-TB strains with predicted protein destabilising effects. Overall, our work provides a comprehensive mutational catalogue for BDQ and DLM/PTM associated genes, which will assist with establishing associations with phenotypic resistance; thereby, improving the understanding of the causative mechanisms of resistance for these drugs, leading to better treatment outcomes.

2017 ◽  
Vol 95 (7) ◽  
pp. 33-39
Author(s):  
O. A. Pasechnik ◽  
◽  
A. M. Dymova ◽  
V. L. Stasenko ◽  
M. P. Tatarintseva ◽  
...  

2017 ◽  
Vol 95 (7) ◽  
pp. 33-39
Author(s):  
O. A. Pаsechnik ◽  
M. A. Dymovа ◽  
V. L. Stаsenko ◽  
M. P. Tаtаrintsevа ◽  
I. P. Kolesnikovа ◽  
...  

2015 ◽  
Vol 36 ◽  
pp. 23-26 ◽  
Author(s):  
Jalil Kardan Yamchi ◽  
Mehri Haeili ◽  
Seifu Gizaw Feyisa ◽  
Hossein Kazemian ◽  
Abdolrazagh Hashemi Shahraki ◽  
...  

2019 ◽  
Vol 11 (16) ◽  
pp. 2193-2203
Author(s):  
Rafal Sawicki ◽  
Grazyna Ginalska

The significant increase in the detection of drug-resistant strains of Mycobacterium tuberculosis caused an urgent need for the discovery new antituberculosis drugs. Development of bioinformatics and computational sciences enabled the progress of new strategies leading to design, discovery and identification of a series of interesting drug candidates. In this short review, we would like to present recently discovered compounds targeting important mycobacterial proteins: DNA topoisomerases and the transcriptional repressor of EthA monooxygenase – EthR.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


Author(s):  
Rashmi S Mudliar ◽  
Umay Kulsum ◽  
Syed Beenish Rufai ◽  
Mika Umpo ◽  
Moi Nyori ◽  
...  

Uncontrolled transmission of Mycobacterium tuberculosis (M. tuberculosis, MTB) drug resistant strains is a challenge to control efforts of global tuberculosis programme. Due to increasing multi-drug resistant (MDR) cases in Arunachal Pradesh, a northeastern state of India, the tracking and tracing of these resistant MTB strains is crucial for infection control and spread of drug resistance. This study aims to correlate the phenotypic DST, genomic DST (gDST) and phylogenetic analysis of MDR-MTB strains in the region. Of total 200 suspected MDR-MTB isolates, 125(62.5%) were identified as MTB. MGIT-960 SIRE DST detected 71/125(56.8%) isolates as MDR/RR-MTB of which 22(30.9%) were detected resistant to second line drugs. Whole genome sequencing of 65 isolates and their gDST found Ser315Thr mutation in katG (35/45;77.8%) and Ser531Leu mutation in rpoB (21/41;51.2%) associated with drug resistance. SNP barcoding categorized the dataset with Lineage2 (41;63.1%) being predominant followed by Lineage3 (10;15.4%), Lineage1 (8;12.3%) and Lineage4 (6;9.2%) respectively. Phylogenetic assignment by cgMLST gave insights of two Beijing sub-lineages viz; 2.2.1 (SNP difference < 19) and 2.2.1.2 (SNP difference < 9) associated with recent ongoing transmission in Arunachal Pradesh. This study provides first insight in identifying the ongoing transmission of two virulent Beijing sub-lineages associated with TB drug resistance.


Sign in / Sign up

Export Citation Format

Share Document