scholarly journals First-in-class topical therapeutic omilancor ameliorates disease severity and inflammation through activation of LANCL2 pathway in psoriasis

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nuria Tubau-Juni ◽  
Raquel Hontecillas ◽  
Andrew Leber ◽  
Panita Maturavongsadit ◽  
Jyoti Chauhan ◽  
...  

AbstractPsoriasis (PsO) is a complex immune-mediated disease that afflicts 100 million people. Omilancor is a locally-acting, small molecule that selectively activates the Lanthionine Synthetase C-like 2 (LANCL2) pathway, resulting in immunoregulatory effects at the intersection of immunity and metabolism. Topical omilancor treatment in an imiquimod-induced mouse model of PsO ameliorates disease severity, epidermal hyperplasia and acanthosis. Further, pharmacological activation of LANCL2 results in significant downregulation of proinflammatory markers including local reduction of IL17, and infiltration of proinflammatory cell subsets. These therapeutic effects were further validated in an IL-23 PsO model. This model reported increased preservation of homeostatic skin structure, accompanied by a decreased infiltration of proinflammatory T cell subsets. In CD4+ T cells and Th17 cells, the LANCL2 pathway regulates proinflammatory cytokine production, proliferation and glucose metabolism. Metabolically, the loss of Lancl2 resulted in increased glycolytic rates, lactate production and upregulated enzymatic activity of hexokinase and lactate dehydrogenase (LDH). Inhibition of LDH activity abrogated the increased proliferation rate in Lancl2−/− CD4+ T cells. Additionally, topical omilancor treatment decreased the metabolic upregulation in keratinocytes, keratinocyte hyperproliferation and expression of inflammatory markers. Omilancor is a promising topical, LANCL2-targeting therapeutic candidate for the treatment of PsO and other dermatology indications.

Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1557-1569 ◽  
Author(s):  
Jinfang Zhu ◽  
William E. Paul

Abstract In 1986, Mosmann and Coffman identified 2 subsets of activated CD4 T cells, Th1 and Th2 cells, which differed from each other in their pattern of cytokine production and their functions. Our understanding of the importance of the distinct differentiated forms of CD4 T cells and of the mechanisms through which they achieve their differentiated state has greatly expanded over the past 2 decades. Today at least 4 distinct CD4 T-cell subsets have been shown to exist, Th1, Th2, Th17, and iTreg cells. Here we summarize much of what is known about the 4 subsets, including the history of their discovery, their unique cytokine products and related functions, their distinctive expression of cell surface receptors and their characteristic transcription factors, the regulation of their fate determination, and the consequences of their abnormal activation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5240-5240
Author(s):  
Edward Truelove ◽  
Frances Seymour ◽  
Joseph G Taylor ◽  
Mariarita Calaminici ◽  
Andrew James Clear ◽  
...  

Diffuse large B-cell Lymphoma (DLBCL) is the most frequent non-Hodgkin's lymphoma with 3 molecularly distinct subtypes based on cell of origin. Genetic alterations in DLBCL, expression of checkpoint molecules and an immunosuppressive microenvironment (ME) all contribute to escape from host anti-lymphoma immunity. The clinical success of monoclonal antibodies that engage the immune system and CAR-T cellular therapy have further highlighted the importance and therapeutic potential of the immune ME in DLBCL. Here we present data from comprehensive phenotyping of cell suspensions from diagnostic DLBCL and reactive lymph node / tonsil (RLNT) biopsies by cytometry by time of flight (CyTOF), with a focus on the T-cell compartment. Cryopreserved samples from 6 DLBCL (5 LN, 1 spleen) at diagnosis and 5 RLNT (3 LN, 2 tonsil) were stained with a panel of metal-tagged antibodies and analysed by CyTOF2. Samples were acquired in 2 batches with the same RLNT (LN) sample with each to ensure staining consistency. Data were normalised, uploaded to Cytobank, gated to CD45+ CD3+ live single cells and exported for further analysis with Cytofkit in R. CD3+ events were gated further into CD4+ and CD8+ subsets, which demonstrated that CD4+ T cells were the predominant phenotype in all samples. However, there was a marked skewing of the CD4:CD8 ratio, with CD4+ T cells lower as a percentage of CD3+ T cells in the DLBCL samples (55.84 v 78.18, p=0.0173*). CD8+ T cells were higher as a percentage in DLBCL (36.22 v 16.75, p=0.03*) with no difference seen in double negative (DN) T cells. CD3+ T cells were then clustered with FlowSOM and visualised according to the tSNE algorithm. A heatmap of median marker expression intensity was generated to facilitate cluster identification. This revealed a number of differences in cluster abundance between the groups, with a significant shift in differentiation away from naïve and towards an effector memory (EM) phenotype in DLBCL. There were fewer cells in the CD27+ CD28+ CCR7+ CD45RA+ CD4+ naïve cluster in the DLBCL samples than the RLNT (p=0.0173*). Although the DLBCL samples showed an overall reduction in CD4+ T cells, the clusters of regulatory T cells (Treg: CD4+ CD25+ FOXP3+ and CD127-/low) consisted of more cells from these cases than the RLNT (p=0.0043**). Within the Treg population, the DLBCL patients had more Th1 polarised (T-bet+) Tregs and more PD-1 expressing Tregs. The Th1 Tregs predominantly secreted the suppressive cytokines IL-2, IL-10 and TGF-β on stimulation and may play a role in inhibiting Th1 responses. Conventional Th1 were not increased in DLBCL resulting in a higher Th1 Treg to Th1 ratio than in RLNT. There was a trend for RLNT samples to contribute more cells to the PD-1 high follicular helper T cell (TFH) cluster and DLBCL to the PD-1+ TIM-3+ DN cluster. The DLBCL ME had relatively more CD8+ T cells and contributed more to the CCR7- CD45RA- CD8+ EM clusters (p=0.0173*) but the CD8+ T cells in the RNLT samples tended to a naïve CCR7+ CD45RA+ PD-1- phenotype (p=0.0519). The CD8+ EM cells enriched in the DLBCL ME expressed the cytotoxic markers granzyme and perforin and responded to stimulation with degranulation (CD107a) and cytokine production (IFNγ, TNFα, TGFβ and IL-10), not suggestive of exhaustion. It is also notable that a cluster of PD-1+ TIM-3+ CD8+ EM with reduced markers of cytotoxicity, low CD107a expression and poor cytokine production after stimulation was predominantly made up of cells from DLBCL suspensions (p=0.002**). CyTOF analysis of the DLBCL ME has demonstrated a shift in the balance of T cell subsets and CD4:CD8 ratio with a relative abundance of immunosuppressive Tregs despite an overall reduction in the CD4+ population and a skew towards differentiation in CD4+ and CD8+ populations. The cytotoxic T cells in DLBCL tended to have an EM phenotype and express immune checkpoint molecules but remained capable of cytokine production. However, the production of IFNγ by these effector T cells may play a role in the development of inhibitory Tregs with a Th1 phenotype, which were enriched in these patients. A cluster of CD8+ EM cells expressing checkpoint molecules and displaying characteristics of exhaustion following stimulation was also seen in these DLBCL patients. These data provide new insights into the immunosuppressive nature of the DLBCL ME and provide a rationale for targeting the ME alongside existing therapeutic approaches, including CAR-T cells to improve outcomes. Disclosures Gribben: Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding.


2020 ◽  
Vol 66 (12) ◽  
pp. 1666-1672
Author(s):  
Yasin Kalpakci ◽  
Tuba Hacibekiroglu ◽  
Gulay Trak ◽  
Cengiz Karacaer ◽  
Taner Demirci ◽  
...  

SUMMARY BACKGROUND: The COVID-19 pandemic has affected the entire world, posing a serious threat to human health. T cells play a critical role in the cellular immune response against viral infections. We aimed to reveal the relationship between T cell subsets and disease severity. METHODS: 40 COVID-19 patients were randomly recruited in this cross-sectional study. All cases were confirmed by quantitative RT-PCR. Patients were divided into two equivalent groups, one severe and one nonsevere. Clinical, laboratory and flow cytometric data were obtained from both clinical groups and compared. RESULTS: Lymphocyte subsets, CD4+ and CD8+ T cells, memory CD4+ T cells, memory CD8+ T cells, naive CD4+ T cells, effector memory CD4+ T cells, central memory CD4+ T cells, and CD3+CD4+ CD25+ T cells were significantly lower in severe patients. The naive T cell/CD4 + EM T cell ratio, which is an indicator of the differentiation from naive T cells to memory cells, was relatively reduced in severe disease. Peripheral CD4+CD8+ double-positive T cells were notably lower in severe presentations of the disease (median DP T cells 11.12 µL vs 1.95 µL; p< 0.001). CONCLUSIONS: As disease severity increases in COVID-19 infection, the number of T cell subsets decreases significantly. Suppression of differentiation from naive T cells to effector memory T cells is the result of severe impairment in adaptive immune functions. Peripheral CD4+CD8+ double-positive T cells were significantly reduced in severe disease presentations and may be a useful marker to predict disease severity.


2015 ◽  
Vol 1 (2) ◽  
pp. 122-128
Author(s):  
Syuichi Koarada ◽  
Yuri Sadanaga ◽  
Natsumi Nagao ◽  
Satoko Tashiro ◽  
Rie Suematsu ◽  
...  

2015 ◽  
Vol 213 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Arata Takeuchi ◽  
Mohamed El Sherif Gadelhaq Badr ◽  
Kosuke Miyauchi ◽  
Chitose Ishihara ◽  
Reiko Onishi ◽  
...  

Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene.


2002 ◽  
Vol 169 (10) ◽  
pp. 5451-5457 ◽  
Author(s):  
Gareth A. Stewart ◽  
Jacqueline A. Lowrey ◽  
Sonia J. Wakelin ◽  
Paul M. Fitch ◽  
Susannah Lindey ◽  
...  

2012 ◽  
Vol 209 (12) ◽  
pp. 2263-2276 ◽  
Author(s):  
Tom M. McCaughtry ◽  
Ruth Etzensperger ◽  
Amala Alag ◽  
Xuguang Tai ◽  
Sema Kurtulus ◽  
...  

The thymus generates T cells with diverse specificities and functions. To assess the contribution of cytokine receptors to the differentiation of T cell subsets in the thymus, we constructed conditional knockout mice in which IL-7Rα or common cytokine receptor γ chain (γc) genes were deleted in thymocytes just before positive selection. We found that γc expression was required to signal the differentiation of MHC class I (MHC-I)–specific thymocytes into CD8+ cytotoxic lineage T cells and into invariant natural killer T cells but did not signal the differentiation of MHC class II (MHC-II)–specific thymocytes into CD4+ T cells, even into regulatory Foxp3+CD4+ T cells which require γc signals for survival. Importantly, IL-7 and IL-15 were identified as the cytokines responsible for CD8+ cytotoxic T cell lineage specification in vivo. Additionally, we found that small numbers of aberrant CD8+ T cells expressing Runx3d could arise without γc signaling, but these cells were developmentally arrested before expressing cytotoxic lineage genes. Thus, γc-transduced cytokine signals are required for cytotoxic lineage specification in the thymus and for inducing the differentiation of MHC-I–selected thymocytes into functionally mature T cells.


Sign in / Sign up

Export Citation Format

Share Document