scholarly journals Author Correction: West African monsoon precipitation impacted by the South Eastern Atlantic biomass burning aerosol outflow

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
F. Solmon ◽  
N. Elguindi ◽  
M. Mallet ◽  
C. Flamant ◽  
P. Formenti
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
F. Solmon ◽  
N. Elguindi ◽  
M. Mallet ◽  
C. Flamant ◽  
P. Formenti

AbstractThe West African Monsoon (WAM) is a complex system depending on global climate influences and multiple regional environmental factors. Central and Southern African biomass-burning (SABB) aerosols have been shown to perturb WAM during episodic northward inter-hemispheric transport events, but a possible dynamical connection between the core of the SABB aerosol outflow and the WAM system remains unexplored. Through regional climate modeling experiments, we show that SABB aerosols can indeed impact WAM dynamics via two competitive regional scale and inter-hemispheric dynamical feedbacks originating from (i) enhanced diabatic heating occurring in the Southeastern Atlantic low-cloud deck region, and (ii) aerosol and cloud-induced sea surface temperature cooling. These mechanisms, related to aerosol direct, semi-direct, and indirect effects, are shown to have different seasonal timings, resulting in a reduction of June to September WAM precipitation, while possibly enhancing late-season rainfall in WAM coastal areas.


2019 ◽  
Author(s):  
Jonathan W. Taylor ◽  
Sophie L. Haslett ◽  
Keith Bower ◽  
Michael Flynn ◽  
Ian Crawford ◽  
...  

Abstract. Low-level clouds (LLC) cover a wide area of southern West Africa (SWA) during the summer monsoon months, and have an important cooling effect on the regional climate. Previous studies of these clouds have focused on modelling and remote sensing via satellite. We present the first comprehensive set of regional, in situ measurements of cloud microphysics, taken during June – July 2016, as part of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) campaign, assessing spatial and temporal variation in the properties of these clouds. LLC developed overnight and mean cloud cover peaked a few hundred kilometres inland around 10:00 local solar time (LST), before clouds began to dissipate and convection intensified in the afternoon. Additional sea breeze clouds developed near the coast in the late morning, reaching a maximum extent around 12:00 LST. Regional variation in LLC cover was largely determined by the modulation of the cool maritime inflow by the local orography, with peaks on the upwind side of hills and minima on the leeward sides. In the broad-scale cloud field, no lasting impacts related to anthropogenic aerosol were observed downwind of major population centres. The boundary layer cloud drop number concentration (CDNC) was locally variable inland, ranging from 200 to 840 cm−3 (10th and 90th percentiles at standard temperature and pressure), but showed no systematic regional variations. Enhancements were seen in pollution plumes from the coastal cities, but were not statistically significant across the region. The majority of accumulation mode aerosols, and therefore cloud condensation nuclei, were from ubiquitous biomass burning smoke transported from the southern hemisphere. Consequently, all clouds measured (inland and offshore) had significantly higher CDNC and lower effective radius than clouds over the remote south Atlantic from literature. A parcel model sensitivity analysis showed that doubling or halving local emissions only changed the calculated CDNC by 13–22 %, as the high background meant local emissions were a small fraction of total aerosol. As the population of SWA grows, local emissions are expected to rise. Biomass burning smoke transported from the southern hemisphere is likely to dampen any effect of these increased local emissions on cloud-aerosol interactions. An integrative analysis between local pollution and Central African biomass burning emissions must be considered when predicting anthropogenic impacts on the regional cloud field during the West African monsoon.


2021 ◽  
Author(s):  
Frederic Bonou ◽  
Casimir Yelognisse Da-Allada ◽  
Ezinvi Baloïtcha ◽  
Eric Alamou ◽  
Eliezer Iboukoun Biao ◽  
...  

Author(s):  
David McGee ◽  
Peter B. deMenocal

The expansion and intensification of summer monsoon precipitation in North and East Africa during the African Humid Period (AHP; c. 15,000–5,000 years before present) is recorded by a wide range of natural archives, including lake and marine sediments, animal and plant remains, and human archaeological remnants. Collectively this diverse proxy evidence provides a detailed portrait of environmental changes during the AHP, illuminating the mechanisms, temporal and spatial evolution, and cultural impacts of this remarkable period of monsoon expansion across the vast expanse of North and East Africa. The AHP corresponds to a period of high local summer insolation due to orbital precession that peaked at ~11–10 ka, and it is the most recent of many such precessionally paced pluvial periods over the last several million years. Low-latitude sites in the North African tropics and Sahel record an intensification of summer monsoon precipitation at ~15 ka, associated with both rising summer insolation and an abrupt warming of the high northern latitudes at this time. Following a weakening of monsoon strength during the Younger Dryas cold period (12.9–11.7 ka), proxy data point to peak intensification of the West African monsoon between 10–8 ka. These data document lake and wetland expansions throughout almost all of North Africa, expansion of grasslands, shrubs and even some tropical trees throughout much of the Sahara, increases in Nile and Niger River runoff, and proliferation of human settlements across the modern Sahara. The AHP was also marked by a pronounced reduction in windblown mineral dust emissions from the Sahara. Proxy data suggest a time-transgressive end of the AHP, as sites in the northern and eastern Sahara become arid after 8–7 ka, while sites closer to the equator became arid later, between 5–3 ka. Locally abrupt drops in precipitation or monsoon strength appear to have been superimposed on this gradual, insolation-paced decline, with several sites to the north and east of the modern arid/semi-arid boundary showing evidence of century-scale shifts to drier conditions around 5 ka. This abrupt drying appears synchronous with rapid depopulation of the North African interior and an increase in settlement along the Nile River, suggesting a relationship between the end of the AHP and the establishment of proto-pharaonic culture. Proxy data from the AHP provide an important testing ground for model simulations of mid-Holocene climate. Comparisons with proxy-based precipitation estimates have long indicated that mid-Holocene simulations by general circulation models substantially underestimate the documented expansion of the West African monsoon during the AHP. Proxy data point to potential feedbacks that may have played key roles in amplifying monsoon expansion during the AHP, including changes in vegetation cover, lake surface area, and mineral dust loading. This article also highlights key areas for future research. Among these are the role of land surface and mineral aerosol changes in amplifying West African monsoon variability; the nature and drivers of monsoon variability during the AHP; the response of human populations to the end of the AHP; and understanding locally abrupt drying at the end of the AHP.


2010 ◽  
Vol 10 (20) ◽  
pp. 9797-9817 ◽  
Author(s):  
J. E. Williams ◽  
M. P. Scheele ◽  
P. F. J. van Velthoven ◽  
V. Thouret ◽  
M. Saunois ◽  
...  

Abstract. Biomass burning (BB) in southern Africa is the largest emission source of CO and O3 precursors within Africa during the West African Monsoon (WAM) between June and August. The long range transport and chemical processing of such emissions thus has the potential to exert a dominant influence on the composition of the tropical troposphere over Equatorial Africa (EA) and the Tropical Atlantic Ocean (TAO). We have performed simulations using a three-dimensional global chemistry-transport model (CTM) to quantify the effect that continental transport of such BB plumes has on the EA region. BB emissions from southern Africa were found to exert a significant influence over the TAO and EA between 10° S–20° N. The maximum concentrations in CO and O3 occur between 0–5° S near the position of the African Easterly Jet – South as placed by the European Centre for Medium range Weather Forecasts (ECMWF) meteorological analysis data. By comparing co-located model output with in-situ measurements we show that the CTM fails to capture the tropospheric profile of CO in southern Africa near the main source region of the BB emissions, as well as the "extreme" concentrations of both CO and O3 seen between 600–700 hPa over EA around 6° N. For more northerly locations the model exhibits high background concentrations in both CO and O3 related to BB emissions from southern Africa. By altering both the temporal resolution and the vertical distribution of BB emissions in the model we show that changes in temporal resolution have the largest influence on the transport of trace gases near the source regions, EA, and in the outflow towards the west of Central Africa. Using a set of trajectory calculations we show that the performance of the CTM is heavily constrained by the ECMWF meteorological fields used to drive the CTM, which transport biomass burning plumes from southern Africa into the lower troposphere of the TAO rather than up towards the middle troposphere at 650 hPa. Similar trajectory simulations repeated using an updated meteorological dataset, which assimilates additional measurement data taken around EA, show markedly different origins for pollution events and highlight the current limitations in modelling this tropical region.


2021 ◽  
Author(s):  
Nora Specht ◽  
Martin Claußen ◽  
Thomas Kleinen

<p>During the mid-Holocene, an expansion of vegetation, lakes and wetlands over North Africa reinforced the West African monsoon precipitation increase that was initiated by changes in the orbital forcing. Sedimentary records reflect these surface changes, however, they provide only limited spatial and temporal information about the size and distribution of mid-Holocene lakes and wetlands. Previous simulation studies that investigated the influence of mid-Holocene lakes and wetlands on the West African monsoon precipitation, prescribed either a small lake and wetland extent or focusing on mega-lakes only. In contrast to these simulation studies, we investigate the<strong> </strong>range of simulated West African monsoon precipitation changes caused by a small and a potential maximum lake and wetland extent during the mid-Holocene.</p><p>Therefore, four mid-Holocene sensitivity experiments are conducted using the atmosphere model ICON-A and the land model JSBACH4 at 160 km resolution. The simulations have a 30-year evaluation period and only differ in their lake and wetland extent over North Africa: (1) pre-industrial lakes, (2) small lake extent, (3) maximum lake extent and (4) maximum wetland extent. The small lake extent is given by the reconstruction map of Hoelzmann et al. (1998) and the potential maximum lake and wetland extent is given by a model derived map of Tegen et al. (2002).</p><p>The simulation results reveal that the maximum lake extent shifts the Sahel precipitation threshold (> 200 mm/year) about 3 ° further northward than the small lake extent. The major precipitation differences between the small and maximum lake extent results from the lakes over the West Sahara. Additionally, the maximum wetland extent causes a stronger West African monsoon precipitation increase than the equally large maximum lake extent, particularly at higher latitudes.</p>


2010 ◽  
Vol 10 (3) ◽  
pp. 7507-7552 ◽  
Author(s):  
J. E. Williams ◽  
M. P. Scheele ◽  
P. F. J. van Velthoven ◽  
V. Thouret ◽  
M. Saunois ◽  
...  

Abstract. We have performed simulations using a 3-D global chemistry-transport model (TM4_AMMA) to investigate the effect that continental transport of biomass burning plumes have on regional air quality over Equatorial Africa during the West African Monsoon (WAM) period in 2006. By performing a number of sensitivity studies we show that biomass burning emissions from southern Africa (0–40° S) have a strong influence on the composition of the tropical troposphere around Equatorial Africa and the outflow regions towards the west, especially between 10° S–10° N. By altering both the temporal distribution and the injection heights used for introducing the biomass burning emissions we show that changes in temporal distribution are much more important in determining the daily variability of trace gas species over the southern Atlantic than boundary layer processes. When adopting the GFEDv2 emission inventory the maximum concentrations in CO and O3 occur between 0–5° S, which coincides with the position of the southern African Easterly Jet. By comparing co-located model output with in-situ measurements made during the AMMA measurement campaign we show that the model fails to capture the tropospheric profile of CO in the burning region, as well as the "extreme" concentrations of both CO and O3 seen around 600–700 hPa above Equatorial Africa. Trajectory analysis show that the 6-hourly ECMWF meteorological fields do not allow transport of biomass burning plumes from southern Africa directly into the mid-troposphere around ~6° N. Similar trajectory simulations repeated using an updated meteorological dataset, which assimilates additional measurement data for the African region, shows markedly different origins for pollution events and reveals that the performance of the CTM is heavily constrained by the ECMWF operational analysis data which drives the model.


2010 ◽  
Vol 10 (17) ◽  
pp. 8437-8451 ◽  
Author(s):  
A. Matsuki ◽  
B. Quennehen ◽  
A. Schwarzenboeck ◽  
S. Crumeyrolle ◽  
H. Venzac ◽  
...  

Abstract. While the Sahelian belt in West Africa stretches in the border between the global hot-spots of mineral dust and biomass burning aerosols, the presence of West African Monsoon is expected to create significant vertical and temporal variations in the regional aerosol properties through transport and mixing of particles from various sources (mineral dust, biomass burning, sulfates, sea salt). In order to improve our understanding of the evolution of the aerosol-cloud system over such region across the onset of the summer monsoon, the French ATR-42 research aircraft was deployed in Niamey, Niger (13°30' N, 02°05' E) in summer 2006, during the three special observation periods (SOPs) of the African Monsoon Multidisciplinary Analysis (AMMA) project. These three SOPs covered both dry and wet periods before and after the onset of the Western African Monsoon. State of the art physico-chemical aerosol measurements on the ATR-42 showed a notable seasonal transition in averaged number size distributions where (i) the Aitken mode is dominating over the accumulation mode during the dry season preceding the monsoon arrival and (ii) the accumulation mode increasingly gained importance after the onset of the West African monsoon and even dominated the Aitken mode after the monsoon had fully developed. The parameters for the mean log-normal distributions observed in respective layers characterized by the different wind regimes (monsoon layer, SAL, free troposphere) are presented, together with the major particle compositions found in the accumulation mode particles. Thereby, results of this study should facilitate radiative transfer calculations, validation of satellite remote sensors, and detailed transport modeling by partners within and outside the AMMA community. Extended analysis of the chemical composition of single aerosol particles by a transmission electron microscope (TEM) coupled to an energy dispersive X-ray spectrometer (EDX) revealed dominance of mineral dust (aluminosilicate) even in the submicron particle size range during the dry period, gradually replaced by prevailing biomass burning and sulfate particles, after the onset of the monsoon period. The spatial and temporal evolution from SOP1 to SOP2a1 and SOP2a2 of the particle physical and chemical properties and associated aerosol hygroscopic properties are remarkably consistent.


2019 ◽  
Vol 46 (23) ◽  
pp. 14021-14029 ◽  
Author(s):  
P. Braconnot ◽  
J. Crétat ◽  
O. Marti ◽  
Y. Balkanski ◽  
A. Caubel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document