scholarly journals 2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Melanie Timpel ◽  
Giovanni Ligorio ◽  
Amir Ghiami ◽  
Luca Gavioli ◽  
Emanuele Cavaliere ◽  
...  

AbstractThe ongoing miniaturization of electronic devices has boosted the development of new post-silicon two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, one of the most prominent materials being molybdenum disulfide (MoS2). A major obstacle for the industrial production of MoS2-based devices lies in the growth techniques. These must ensure the reliable fabrication of MoS2 with tailored 2D properties to allow for the typical direct bandgap of 1.9 eV, while maintaining large-area growth and device compatibility. In this work, we used a versatile and industrially scalable MoS2 growth method based on ionized jet deposition and annealing at 250 °C, through which a 3D stable and scalable material exhibiting excellent electronic and optical properties of 2D MoS2 is synthesized. The thickness-related limit, i.e., the desired optical and electronic properties being limited to 2D single/few-layered MoS2, was overcome in the thin film through the formation of encapsulated highly crystalline 2D MoS2 nanosheets exhibiting a bandgap of 1.9 eV and sharp optical emission. The newly synthesized 2D-in-3D MoS2 structure will facilitate device compatibility of 2D materials and confer superior optoelectronic device function.

Nanoscale ◽  
2021 ◽  
Author(s):  
Conor Patrick Cullen ◽  
Cormac Ó Coileáin ◽  
John B McManus ◽  
Oliver Hartwig ◽  
David McCloskey ◽  
...  

Group-10 transition metal dichalcogenides (TMDs) are rising in prominence within the highly innovative field of 2D materials. While PtS2 has been investigated for potential electronic applications, due to its high...


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Caihong Li ◽  
Juntong Zhu ◽  
Wen Du ◽  
Yixuan Huang ◽  
Hao Xu ◽  
...  

AbstractMonolayer transition metal dichalcogenides (TMDs) show promising potential for next-generation optoelectronics due to excellent light capturing and photodetection capabilities. Photodetectors, as important components of sensing, imaging and communication systems, are able to perceive and convert optical signals to electrical signals. Herein, the large-area and high-quality lateral monolayer MoS2/WS2 heterojunctions were synthesized via the one-step liquid-phase chemical vapor deposition approach. Systematic characterization measurements have verified good uniformity and sharp interfaces of the channel materials. As a result, the photodetectors enhanced by the photogating effect can deliver competitive performance, including responsivity of ~ 567.6 A/W and detectivity of ~ 7.17 × 1011 Jones. In addition, the 1/f noise obtained from the current power spectrum is not conductive to the development of photodetectors, which is considered as originating from charge carrier trapping/detrapping. Therefore, this work may contribute to efficient optoelectronic devices based on lateral monolayer TMD heterostructures.


Nanophotonics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 1589-1600 ◽  
Author(s):  
M.A. Khan ◽  
Michael N. Leuenberger

AbstractThe discovery of two-dimensional (2D) materials has opened up new frontiers and challenges for exploring fundamental research. Recently, single-layer (SL) transition metal dichalcogenides (TMDCs) have emerged as candidate materials for electronic and optoelectronic applications. In contrast to graphene, SL TMDCs have sizable band gaps that change from indirect to direct in SLs, which is useful in making thinner and more efficient electronic devices, such as transistors, photodetectors, and electroluminescent devices. In addition, SL TMDCs show strong spin-orbit coupling effects at the valence band edges, giving rise to the observation of valley-selective optical excitations. Here, we review the basic electronic and optical properties of pure and defected group-VIB SL TMDCs, with emphasis on the strong excitonic effects and their prospect for future optoelectronic devices.


2021 ◽  
Author(s):  
Denice Feria ◽  
Sonia Sharma ◽  
Yu-Ting Chen ◽  
Zhi-Ying Weng ◽  
Kuo-Pin Chiu ◽  
...  

Abstract Understanding the mechanism of the negative differential resistance (NDR) in transition metal dichalcogenides is essential for fundamental science and the development of electronic devices. Here, the NDR of the current-voltage characteristics was observed based on the glutamine-functionalized WS2 quantum dots (QDs). The NDR effect can be adjusted by varying the applied voltage range, air pressure, surrounding gases, and relative humidity. A peak-to-valley current ratio as high as 6.3 has been achieved at room temperature. Carrier trapping induced by water molecules was suggested to be responsible for the mechanism of the NDR in the glutamine-functionalized WS2 QDs. Investigating the NDR of WS2 QDs may promote the development of memory applications and emerging devices.


Author(s):  
Agraj Khare ◽  
Priyanka Dwivedi

Abstract Transition-metal Dichalcogenides (TMDs) materials are getting attention in the emerging trends of electronic devices development for a variety of applications. One of such materials is MoS2 which is best suited for developing deeply scaled field effect transistors (FETs). With the plethora of TMDs available, MoS2 is the most widely studied and used material because of its tunable properties like band gap, morphology, optical, structural, electrical, flexible etc. This paper represents the design and simulation aspect of the multi-layered MoS2 Based FET devices. Evidence of change in comparative electrical characteristics of MoS2 based FET devices due to variation of thickness and doping of the gate layer are also presented. In this contribution, we have simulated a full-wave model using the COMSOL Multiphysics module for two different thicknesses 0.7 nm and 1 nm. The FET device with 1 nm MoS2 offers a better dynamic range of operation and has a broader spectrum of threshold potential. The characteristic plots of the 1 nm device showed very less deviation from ideal trends than in the 0.7 nm device. The optimized FET structure offers better performance and efficiency in terms of electrical properties.


2016 ◽  
Vol 31 (7) ◽  
pp. 967-974 ◽  
Author(s):  
Michael E. McConney ◽  
Nicholas R. Glavin ◽  
Abigail T. Juhl ◽  
Michael H. Check ◽  
Michael F. Durstock ◽  
...  

Abstract


2016 ◽  
Vol 15 (2) ◽  
pp. 310-317 ◽  
Author(s):  
Wai Ching Cho ◽  
Kam Lam Wu ◽  
Pak San Yip ◽  
Xinsheng Wang ◽  
Yang Chai ◽  
...  

2020 ◽  
Vol 15 (6) ◽  
pp. 673-678
Author(s):  
Soo-Young Kang ◽  
Gil-Sung Kim ◽  
Min-Sung Kang ◽  
Won-Yong Lee ◽  
No-Won Park ◽  
...  

Transition metal dichalcogenides (TMDs) are layered two-dimensional (2D) semiconductors and have received significant attention for their potential application in field effect transistors (FETs), owing to their inherent characteristics. Among the various reported 2D TMD materials, monolayer (ML) molybdenum disulfide (MoS2) is being considered as a promising channel material for the fabrication of future transistors with gate lengths as small as ∼1 nm. In this work, we present chemical vapor deposition-grown triangular ML MoS2 with a lateral size of ∼22 μm and surface coverage of ∼47%, as well as a PMMA-based wet transfer process for depositing the as-grown triangular ML MoS2 flakes onto a SiO2 (∼100 nm)/p++-Si substrate. Additionally, we demonstrate the fabrication of an n-type MoS2-based FET device and study its electrical characteristics as a function of the gate voltage. Our FET device shows an excellent on/off ratio of ∼106, an off-state leakage current of less than 10– 12 A, and a field effect mobility of ∼10.4 cm2/Vs at 300 K.


Sign in / Sign up

Export Citation Format

Share Document