scholarly journals Cyclic production of biocompatible few-layer graphene ink with in-line shear-mixing for inkjet-printed electrodes and Li-ion energy storage

2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Tian Carey ◽  
Abdelnour Alhourani ◽  
Ruiyuan Tian ◽  
Shayan Seyedin ◽  
Adrees Arbab ◽  
...  

AbstractThe scalable production of two-dimensional (2D) materials is needed to accelerate their adoption to industry. In this work, we present a low-cost in-line and enclosed process of exfoliation based on high-shear mixing to create aqueous dispersions of few-layer graphene, on a large scale with a Yw ~ 100% yield by weight and throughput of ϕ ~ 8.3 g h−1. The in-line process minimises basal plane defects compared to traditional beaker-based shear mixing which we attribute to a reduced Reynolds number, Re ~ 105. We demonstrate highly conductive graphene material with conductivities as high as σ ∼ 1.5 × 104 S m−1 leading to sheet-resistances as low as Rs ∼ 2.6 Ω □−1 (t ∼ 25 μm). The process is ideal for formulating non-toxic, biocompatible and highly concentrated (c ∼ 100 mg ml−1) inks. We utilise the graphene inks for inkjet printable conductive interconnects and lithium-ion battery anode composites that demonstrate a low-rate lithium storage capability of 370 mAh g−1, close to the theoretical capacity of graphite. Finally, we demonstrate the biocompatibility of the graphene inks with human colon cells and human umbilical vein endothelial cells at high c ∼ 1 mg ml−1 facilitating a route for the use of the graphene inks in applications that require biocompatibility at high c such as electronic textiles.

2019 ◽  
Vol 72 (6) ◽  
pp. 473 ◽  
Author(s):  
Zongkai Yue ◽  
Yaozu Kang ◽  
Tianyu Mao ◽  
Mengmeng Zhen ◽  
Zhiyong Wang

Titanium dioxide (TiO2) has been widely investigated as the electrode material for lithium ion batteries (LIBs), due to its low cost, small volume expansion, and high environmental friendliness. However, the fading capacity and short cycle life during the cycling process lead to poor cycling performance. Herein, multilayer TiO2 nanobelts with a high specific surface area and with many pores between nanoparticles are constructed via a simple and large-scale approach. Benefiting from the multilayer nanobelt structure, as-prepared TiO2 nanobelts deliver a high reversible capacity, strong cycling stability, and ultra-long cycle life (~185mAhg−1 at 500mAg−1 after 500 cycles) as electrode materials for LIBs.


2019 ◽  
Author(s):  
Ankit Singh ◽  
Kaushik Ghosh ◽  
Sushil Kumar ◽  
Ashwini Agrawal ◽  
Manjeet Jassal ◽  
...  

We have fabricated a flexible fibre supercapacitor having twisted architecture incorporating synthesized carbonaceous electrode materials from widely available inexpensive biomass (banana peel) for energy storage which can be utilized for powering emerging wearable electronic textiles and devices. Activated carbon and few layer graphene were synthesized by carbonizing KOH impregnated and ethanol/acetone washed banana peels respectively at high temperature under inert atmosphere. The synthesized carbonaceous electrode materials along with TiO2 nanopowder were deposited on conductive carbon fibre followed by dip coating with gel electrolyte and twisting to develop the supercapacitor. The fabricated fibre supercapacitor demonstrated high specific capacitance of 15.45 F/g and volumetric capacitance of 1.77 F/cm3 at 10mV/s scan rate. The developed supercapacitor retained ~92% of capacitance upon bending. The fibre supercapacitor can be fabricated on large scale using simple methods and inexpensive biomass for powering wearable electronic applications.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

2021 ◽  
Vol 2076 (1) ◽  
pp. 012060
Author(s):  
Xiaoyu Yang ◽  
Ling Tong ◽  
Lin Wu ◽  
Baoguo Zhang ◽  
Zhiyuan Liao ◽  
...  

Abstract Silicon nanostructures are attracting growing attention due to their properties and promising application prospects in solar energy conversion and storage devices, thermoelectric devices, lithium-ion batteries, and biosensing technologies. The large-scale and low-cost preparation of silicon nanostructures is critical for silicon-based advanced functional devices commercialization. In this paper, the feasibility and mechanism of silicon nanostructure fabricated by non-metallic carbon catalytic etching, as well as the currently existing problems and future development trend are reviewed.


Ionics ◽  
2016 ◽  
Vol 22 (9) ◽  
pp. 1575-1584 ◽  
Author(s):  
Jun Zong ◽  
Yuqi Diao ◽  
Fei Ding ◽  
Wei Feng ◽  
Xingjiang Liu

2015 ◽  
Vol 274 ◽  
pp. 816-822 ◽  
Author(s):  
Junming Xu ◽  
Jinsong Wu ◽  
Langli Luo ◽  
Xinqi Chen ◽  
Huibin Qin ◽  
...  

Author(s):  
Sen Yang ◽  
Ting Li ◽  
Yiwei Tan

Potassium-ion batteries (PIBs) that serve as low-cost and large-scale secondary batteries are regarded as promising alternatives and supplement to lithium-ion batteries. Hybrid active materials can be featured with the synergistic...


2020 ◽  
Vol 4 (9) ◽  
pp. 4780-4788 ◽  
Author(s):  
Qiang Ma ◽  
Jiakang Qu ◽  
Xiang Chen ◽  
Zhuqing Zhao ◽  
Yan Zhao ◽  
...  

Low-cost feedstocks and rationally designed structures are the keys to determining the lithium-storage performance and practical applications of Si-based anodes for lithium-ion batteries (LIBs).


2019 ◽  
Vol 2 (3) ◽  
pp. 1793-1802 ◽  
Author(s):  
Stefano Palumbo ◽  
Laura Silvestri ◽  
Alberto Ansaldo ◽  
Rosaria Brescia ◽  
Francesco Bonaccorso ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4032
Author(s):  
Lianlian Liu ◽  
Niclas Solin ◽  
Olle Inganäs

Humic acid (HA) is a biopolymer formed from degraded plants, making it a ubiquitous, renewable, sustainable, and low cost source of biocarbon materials. HA contains abundant functional groups, such as carboxyl-, phenolic/alcoholic hydroxyl-, ketone-, and quinone/hydroquinone (Q/QH2)-groups. The presence of Q/QH2 groups makes HA redox active and, accordingly, HA is a candidate material for energy storage. However, as HA is an electronic insulator, it is essential to combine it with conductive materials in order to enable fabrication of HA electrodes. One of the lowest cost types of conductive materials that can be considered is carbon-based conductors such as graphite. Herein, we develop a facile method allowing the biocarbon to meet carbon; HA (in the form of a sodium salt) is mixed with graphite by a solvent-free mechanochemical method involving ball milling. Few-layer graphene sheets are formed and the HA/graphite mixtures can be used to fabricate HA/graphite hybrid material electrodes. These electrodes exhibit a conductivity of up to 160 S·m−1 and a discharge capacity as large as 20 mAhg−1. Our study demonstrates a novel methodology enabling scalable fabrication of low cost and sustainable organic electrodes for application as supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document