scholarly journals Wolfberry genomes and the evolution of Lycium (Solanaceae)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
You-Long Cao ◽  
Yan-long Li ◽  
Yun-Fang Fan ◽  
Zhen Li ◽  
Kouki Yoshida ◽  
...  

AbstractWolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.

2020 ◽  
Vol 47 (2) ◽  
pp. 109-120
Author(s):  
Ján Supuka ◽  
Attila Tóth ◽  
Mária Bihuňová ◽  
Martina Verešová ◽  
Karol Šinka

AbstractThe woody plant species composition has been evaluated in three cadastral territories of southwestern Slovakia, together in 77 habitats of non-forest woody vegetation (NFWV). A total of 43 tree species have been identified; 8 of them were alien and 5 species were cultural fruit trees. In total 20 shrub species were identified, out of which 3 were alien. Three woody species are classified as invasive according to the law in Slovakia: Acer negundo L., Ailanthus altissima (Mill.) Swingle, and Lycium barbarum L. They occurred only in 2, maximum in 4 of the evaluated habitats. The most occurring alien tree species Robinia pseudoacacia L. was generally identified in 58 habitats and in 48 habitats, with an incidence over 40% and dominance index of 70.6. The second most occurring alien tree Populus × canadensis had a dominance index of 8.3. The dominant native trees in NFWV were Acer campestre L., Fraxinus excelsior L., Quercus robur L., Salix fragilis L. with the dominance index of 1–5 only.


2019 ◽  
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis Enrique Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

ABSTRACTDimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is predominantly degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter ecoparalogs (copies performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


2020 ◽  
Vol 37 (11) ◽  
pp. 3324-3337
Author(s):  
Elise Parey ◽  
Alexandra Louis ◽  
Cédric Cabau ◽  
Yann Guiguen ◽  
Hugues Roest Crollius ◽  
...  

Abstract Whole-genome duplications (WGDs) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here, we present Synteny-guided CORrection of Paralogies and Orthologies (SCORPiOs), a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-My-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,394) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.


2009 ◽  
Vol 39 (5-6) ◽  
pp. 403-413 ◽  
Author(s):  
Yannick Pauchet ◽  
Paul Wilkinson ◽  
Manuella van Munster ◽  
Sylvie Augustin ◽  
David Pauron ◽  
...  

HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2088-2090 ◽  
Author(s):  
Andrea Balogh ◽  
Tímea Koncz ◽  
Viktória Tisza ◽  
Erzsébet Kiss ◽  
László Heszky

To elucidate the role of ethylene in nonclimacteric fruit development and ripening, quantitative (cDNA–amplified fragment length polymorphism) cDNA–AFLP was used to visualize differential gene expression in four stages of ripening of strawberries (Fragaria×ananassa Duch. `Elsanta') treated with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. The proportion of clones affected by 1-MCP treatment was much higher in green than in white, pink, and red receptacle tissue. Three major cell-wall-related genes were affected by 1-MCP and, thus, are putatively ethylene dependent: a ripening-repressed beta-galactosidase (Faßgal3), up-regulated by 1-MCP; a putative endo-1,3-1,4-beta-D-glucanase (EGase), up-regulated in green and down-regulated in red fruit by 1-MCP; and a pectate lyase B (plB), expressed only in the red stage and significantly down-regulated by 1-MCP. Furthermore, we have identified genes encoding an alcohol dehydrogenase, a protein kinase-related protein, and a putative glutathione S-transferase, all ripening-induced and down-regulated by 1-MCP, suggesting that their regulation is at least partly ethylene dependent.


2018 ◽  
Author(s):  
Aleksia Vaattovaara ◽  
Benjamin Brandt ◽  
Sitaram Rajaraman ◽  
Omid Safronov ◽  
Andres Veidenberg ◽  
...  

AbstractLarge protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation in plants. Here we infer the evolutionary history of a representative protein family, the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 first appeared in secreted proteins. Domain duplications and rearrangements led to the emergence of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). While the DUF26 itself is specific to land plants, structural analyses of Arabidopsis PDLP5 and PDLP8 ectodomains revealed strong similarity to fungal lectins. Therefore, we propose that DUF26-containing proteins constitute a novel group of plant carbohydrate-binding proteins. Following their appearance, CRKs expanded both through tandem duplications and preferential retention of duplicates in whole genome duplication events, whereas PDLPs evolved according to the dosage balance hypothesis. Based on our findings, we suggest that the main mechanism of expansion in new gene families is small-scale duplication, whereas genome fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9861
Author(s):  
Laura Hernández ◽  
Alberto Vicens ◽  
Luis E. Eguiarte ◽  
Valeria Souza ◽  
Valerie De Anda ◽  
...  

Dimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton and bacteria, is primarily degraded by bacteria belonging to the Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the evolution of DmdA under three possible evolutionary scenarios: (1) a recent common ancestor of DmdA and GcvT, (2) a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and (3) an enzymatic adaptation for utilizing DMSP in marine bacteria prior to Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from GcvT genes by duplication and functional divergence driven by positive selection before a coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA by horizontal gene transfer prior to an environment with higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a higher concentration of DMSP in a sulfur-rich atmosphere and anoxic ocean, compared to recent Roseobacter eco-orthologs (orthologs performing the same function under different conditions), which should be adapted to lower concentrations of DMSP.


2020 ◽  
Author(s):  
Elise Parey ◽  
Alexandra Louis ◽  
Cédric Cabau ◽  
Yann Guiguen ◽  
Hugues Roest Crollius ◽  
...  

AbstractWhole genome duplications (WGD) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here we present SCORPiOs, a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-million-year-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,391) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.


Sign in / Sign up

Export Citation Format

Share Document