nonclimacteric fruit
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 1)

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ya Luo ◽  
Yuanxiu Lin ◽  
Fan Mo ◽  
Cong Ge ◽  
Leiyu Jiang ◽  
...  

Strawberry is a typical nonclimacteric fruit, whose ripening mechanism needs to be further investigated. Sucrose has been recently proved as a signal molecule, participating in strawberry fruit ripening and related processes. While in the effects of sucrose application timing and concentration on ripening, fruit qualities remain unclear, as well as the transcriptome-wide details about the effects of sucrose on the gene expression involved in ripening-related processes. In this study, strawberry fruits at the degreening (DG), white (W), and initial-red (IR) stages were treated with different concentration of sucrose. The results showed that anthocyanin was increased while total polyphenol concentration (TPC) and total flavonoid concentration (TFC) were decreased during fruit development after sucrose treatment. Interestingly, It was showed that 100 mM sucrose application at the DG stage had the most obvious effects on fruit ripening; it made all the fruits turn into full-red (FR) around 4 days (d) earlier than the control, while it did not affect fruit quality traits and most bioactive compounds in the FR fruits. Subsequently, RNA sequencing (RNAseq) of the fruits collected at 8 days after 100 mM sucrose treatment was carried out. It was suggested that 993 genes were differentially expressed comparing with the control. Transcriptome-based expression analysis revealed that sucrose induced the expression of genes involved in the AsA and anthocyanin biosynthesis, while largely suppressed the expression of genes in TCA. The results obtained in this study provided more expression profiles of ripening-related genes under the treatment of sucrose, which will contribute to a better understanding for the mechanism underlying sucrose-induced fruit ripening.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Zitao Jiang ◽  
Jiaoke Zeng ◽  
Yunke Zheng ◽  
Hong Tang ◽  
Wen Li

The yardlong bean belongs to nonclimacteric fruit. The objective of this study was to investigate the effects of 1-methylcyclopropene (1-MCP) treatment on physicochemical characteristics of yardlong beans during cold storage. Freshly harvested yardlong beans were treated with different concentrations of 1-MCP (0, 0.75, 1.0, 1.25, and 1.5 μL ·L−1) and stored at 8°C for 21 days. The results showed that, compared with the control, the decrease in firmness and good fruit rate and the degradation of chlorophyll and vitamin C (Vc) content could be inhibited, change in skin color could be delayed, activities of superoxide dismutase (SOD) and peroxidase (POD) could be improved, and the increasing of malondialdehyde (MDA) content and weight loss could be inhibited significantly by 1-MCP treatments. Of the different concentrations of 1-MCP, 1.0 μL·L−1 proved to have the best preservative effects, extending storage time and delaying ripening and senescence of yardlong beans. These results indicated that 1-MCP treatment provided an effective method for delaying the postharvest senescence of fresh yardlong beans.


2016 ◽  
Vol 141 (6) ◽  
pp. 609-616 ◽  
Author(s):  
Shi-Lin Tian ◽  
Li Li ◽  
Yue-Qin Tian ◽  
S.N.M. Shah ◽  
Zhen-Hui Gong

Abscisic acid (ABA) is an important plant hormone that plays an important role in stress responses. Previous studies have suggested that ABA can also accelerate ripening in climacteric and nonclimacteric fruit. Capsanthin is a carotenoid that confers red coloration to mature pepper (Capsicum annuum) fruit. However, the effect of ABA on capsanthin accumulation in pepper fruit has not been thoroughly studied. Herein, we aimed to evaluate the effects of ABA treatment on capsanthin accumulation in pepper fruit and on the expression of key genes involved in the capsanthin biosynthetic pathway. For this purpose, we treated pepper fruit with ABA at green mature stage. Our results indicate that ABA treatment increased capsanthin content in pepper fruit, with the best result obtained with 150 mg·L−1 ABA solution. Application of exogenous ABA also increased the expression levels of the capsanthin synthesis genes phytoene synthase (Psy), lycopene β-cyclase (Lcyb), β-carotene hydroxylase (Crtz), and capsanthin/capsorubin synthase (Ccs), likely explaining the significant capsanthin content increase in pepper fruit.


2013 ◽  
Vol 40 (6) ◽  
pp. 566 ◽  
Author(s):  
Christine Böttcher ◽  
Katie E. Harvey ◽  
Paul K. Boss ◽  
Christopher Davies

Grape (Vitis vinifera L.) berries are considered to be nonclimacteric fruit as they do not exhibit a large rise in ethylene production or respiration rate at the onset of ripening (veraison). However, ethylene may still play a role in berry development and in ripening in particular. (2-Chloroethyl)phosphonic acid (CEPA), an ethylene-releasing reagent, delayed ripening when applied early in berry development. In agreement with a role for ethylene in controlling the timing of ripening, the application of an inhibitor of ethylene biosynthesis, aminoethoxyvinylglycine (AVG), advanced ripening, as did abscisic acid, when applied during the preveraison period. Applications of CEPA nearer to the time of veraison enhanced berry colouration. Changes in the expression of ethylene biosynthesis and receptor genes were observed throughout berry development. Transcript levels of some of these genes were increased by CEPA and decreased by AVG, suggesting changes in ethylene synthesis and perception during the preveraison period that might contribute to the biphasic response to CEPA (ethylene). The significant delay of ripening in field-grown grapes through the application of CEPA also indicates that this may be useful in controlling the timing of veraison, and therefore harvest date, in warmer climates.


2009 ◽  
Vol 15 (1-2) ◽  
Author(s):  
V. Tisza ◽  
L. Kovács ◽  
L. Heszky ◽  
E. Kiss

Fruits are essential part of the human diet: they provide vitamins, minerals, antioxidants to the mankind. Physiologically they can be divided into two groups-climacteric and nonclimacteric - depending if they display any respiratory peak and dramatic increase in ethylene biosynthesis or do not. Ethylene is a gaseous hormone playing a very important role in several physiological processes in plants. While climacteric fruits, like apples, bananas, tomatoes, peaches, apricots show increased ethylene biosynthesis and dramatic respiratory peak during their ripening, nonclimacteric fruits, like strawberries, grapes, citrus do not. The most widely used fruits for studying nonclimacteric ripening are strawberries: several papers are focusing on the identification and characterization of ripening related genes from this plant. Therefore here we attempt to summarize the most important advances in strawberry fruit development, and ripening.


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2088-2090 ◽  
Author(s):  
Andrea Balogh ◽  
Tímea Koncz ◽  
Viktória Tisza ◽  
Erzsébet Kiss ◽  
László Heszky

To elucidate the role of ethylene in nonclimacteric fruit development and ripening, quantitative (cDNA–amplified fragment length polymorphism) cDNA–AFLP was used to visualize differential gene expression in four stages of ripening of strawberries (Fragaria×ananassa Duch. `Elsanta') treated with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. The proportion of clones affected by 1-MCP treatment was much higher in green than in white, pink, and red receptacle tissue. Three major cell-wall-related genes were affected by 1-MCP and, thus, are putatively ethylene dependent: a ripening-repressed beta-galactosidase (Faßgal3), up-regulated by 1-MCP; a putative endo-1,3-1,4-beta-D-glucanase (EGase), up-regulated in green and down-regulated in red fruit by 1-MCP; and a pectate lyase B (plB), expressed only in the red stage and significantly down-regulated by 1-MCP. Furthermore, we have identified genes encoding an alcohol dehydrogenase, a protein kinase-related protein, and a putative glutathione S-transferase, all ripening-induced and down-regulated by 1-MCP, suggesting that their regulation is at least partly ethylene dependent.


2002 ◽  
Vol 127 (5) ◽  
pp. 737-741 ◽  
Author(s):  
Satoru Kondo ◽  
Wanvisa Ponrod ◽  
Sirichai Kanlayanarat ◽  
Nobuhiro Hirai

Endogenous abscisic acid (ABA), its 2-trans isomer (trans-ABA), phaseic acid (PA), and dihydrophaseic acid (DPA) concentrations were quantified in the peel, aril, and seed of mangosteen (Garcinia mangostana L.). Changes in carbon dioxide (CO2) and ethylene (C2H4) production and 1-aminocyclopropane-1-carboxylic acid (ACC) concentration in the peel and aril were also examined. ACC concentration and CO2 and C2H4 production were high at the beginning of fruit development and gradually decreased toward harvest, which confirms that mangosteen is a nonclimacteric fruit. In the peel and aril, the increase in ABA concentration preceded the decrease in peel firmness and coloring of the peel. This suggests that ABA may induce the maturation of mangosteens. The state of ABA metabolism varied with the part of fruit. In the peel, PA and DPA were not considered to be predominant metabolites of ABA because their concentrations were low compared to ABA throughout fruit development. In contrast, in the aril and seed, it is possible that the PA-DPA pathway may be a main pathway of ABA metabolism because the concentrations of DPA in the aril and of PA in the seed directly coincided with the concentrations of ABA. The differences in the ABA metabolites between aril and seed may be caused by the rate of ABA metabolism. The concentrations of ABA and its metabolite in the seed decreased toward harvest.


1999 ◽  
Vol 107 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Ewen D. Mullins ◽  
T. G. McCollum ◽  
Roy E. McDonald

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 816G-817
Author(s):  
Nihal Rajapakse ◽  
William C. Newall

Morphological and physiological changes during maturation and ripening of eight Asian pear cultivars grown in the southeastern United States were evaluated. Fruit size increased throughout maturation. Flesh firmness decreased as fruit matured and averaged ≈30 to 35 N at harvest maturity. The average TSS in mature fruit ranged from 10% to 13%, with `Shinko' having the lowest and `Shinsui' having the highest. TSS increased during 4 weeks of storage at 1C, but the increase was greater in immature fruit than in mature fruit. Respiration rate declined as fruit matured. Ethylene production was low in `Hosui', `Kosui', `Nijisseiki', `Shinseiki', `Chojuro', and `Shinko' fruit. Mature `Ichiban' and `Shinsui' fruit produced high amounts of ethylene. `Kosui', `Shinsui', `Chojuro', and `Ichiban' fruit showed a climacteric rise in respiration and ethylene production at 20C, while `Hosui', `Nijisseiki', `Shinseiki', and `Shinko' behaved as nonclimacteric fruit. Ethylene production by 1C-stored `Kosui', `Shinsui', `Chojuro', and `Ichiban' fruit was increased on removal to 20C. Glucose and fructose were low during early maturation but sharply increased ≈80 to 85 days after full bloom (DAFB). Sucrose was low in immature fruit but accumulated rapidly late in maturation ≈100 to 107 DAFB. In mature `Hosui', `Kosui', `Nijisseiki', `Shinsui', `Shinko', and `Ichiban' fruit, fructose was the predominant sugar, while in `Shinseiki' and `Chojuro' fruit, sucrose was the predominant sugar.


Sign in / Sign up

Export Citation Format

Share Document