scholarly journals Disrupted stepwise functional brain organization in overweight individuals

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hyebin Lee ◽  
Junmo Kwon ◽  
Jong-eun Lee ◽  
Bo-yong Park ◽  
Hyunjin Park

AbstractFunctional hierarchy establishes core axes of the brain, and overweight individuals show alterations in the networks anchored on these axes, particularly in those involved in sensory and cognitive control systems. However, quantitative assessments of hierarchical brain organization in overweight individuals are lacking. Capitalizing stepwise functional connectivity analysis, we assess altered functional connectivity in overweight individuals relative to healthy weight controls along the brain hierarchy. Seeding from the brain regions associated with obesity phenotypes, we conduct stepwise connectivity analysis at different step distances and compare functional degrees between the groups. We find strong functional connectivity in the somatomotor and prefrontal cortices in both groups, and both converge to transmodal systems, including frontoparietal and default-mode networks, as the number of steps increased. Conversely, compared with the healthy weight group, overweight individuals show a marked decrease in functional degree in somatosensory and attention networks across the steps, whereas visual and limbic networks show an increasing trend. Associating functional degree with eating behaviors, we observe negative associations between functional degrees in sensory networks and hunger and disinhibition-related behaviors. Our findings suggest that overweight individuals show disrupted functional network organization along the hierarchical axis of the brain and these results provide insights for behavioral associations.

Author(s):  
Mohammad Ali Taheri ◽  
Sara Torabi ◽  
Noushin Nabavi ◽  
Fatemeh Modarresi-Asem ◽  
Majid Abbasi Sisara ◽  
...  

Task fMRI has played a critical role in recognizing the specific functions of the different regions of human brain during various cognitive activities. This study aimed to investigate group analysis and functional connectivity in the Faradarmangars brain during the Faradarmani CF (FCF) connection. Using task functional MRI (task-fMRI), we attempted the identification of different activated and deactivated brain regions during the Consciousness Filed connection. Clusters that showed significant differences in peak intensity between task and rest group were selected as seeds for seed-voxel analysis. Connectivity of group differences in functional connectivity analysis was determined following each activation and deactivation network. In this study, we report the fMRI-based representation of the FCF connection at the human brain level. The group analysis of FCF connection task revealed activation of frontal lobe (BA6/BA10/BA11). Moreover, seed based functional connectivity analysis showed decreased connectivity within activated clusters and posterior Cingulate Gyrus (BA31). Moreover, we observed an increased connectivity within deactivated clusters and frontal lobe (BA11/BA47) during the FCF connection. Activation clusters as well as the increased and decreased connectivity between different regions of the brain during the FCF connection, firstly, validates the significant effect of the FCF and secondly, indicates a distinctive pattern of connection with this non-material and non-energetic field, in the brain.


2019 ◽  
Author(s):  
Franziskus Liem ◽  
Linda Geerligs ◽  
Jessica S. Damoiseaux ◽  
Daniel S. Margulies

A large body of research shows that aging is accompanied by localized changes in brain structure and function. However, over the past decade the neuroimaging community has begun to recognize the importance of investigating the brain as a network. Brain regions don’t function independently, rather they form an expansive network that allows for communication between distant areas and enables complex cognitive functioning. Hence, age-related changes in the network structure might explain changes in cognitive functioning.Characterizing this network by investigating the brain’s functional connectivity has enabled new insights into brain organization. In this chapter, we will outline how the brain’s functional connectivity is affected by aging and how changes in functional connectivity relate to changes in cognitive functioning. We will address how neurodegenerative pathology influences functional connectivity and how, based on these measurements, biomarkers for clinical outcome might be developed in the future.


Meditation refers to a state of mind of relaxation and concentration, where generally the mind and body is at rest. The process of meditation reflects the state of the brain which is distinct from sleep or typical wakeful states of consciousness. Meditative practices usually involve regulation of emotions and monitoring of attention. Over the past decade there has been a tremendous increase in an interest to study the neural mechanisms involved in meditative practices. It could also be beneficial to explore if the effect of meditation is altered by the number of years of meditation practice. Functional Magnetic Resonance Imaging (fMRI) is a very useful imaging technique which can be used to perform this analysis due to its inherent benefits, mainly it being a non-invasive technique. Functional activation and connectivity analysis can be performed on the fMRI data to find the active regions and the connectivity in the brain regions. Functional connectivity is defined as a simple temporal correlation between anatomically separate, active neural regions. Functional connectivity gives the statistical dependencies between regional time series. It is a statistical concept and is quantified using metrics like Correlation. In this study, a comparison is made between functional connectivity in the brain regions of long term meditation practitioners (LTP) and short-term meditation practitioners (STP) to see the differences and similarities in the connectivity patterns. From the analysis, it is evident that in fact there is a difference in connectivity between long term and short term practitioners and hence continuous practice of meditation can have long term effects.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Laura Bell ◽  
Lisa Wagels ◽  
Christiane Neuschaefer-Rube ◽  
Janina Fels ◽  
Raquel E. Gur ◽  
...  

One of the most significant effects of neural plasticity manifests in the case of sensory deprivation when cortical areas that were originally specialized for the functions of the deprived sense take over the processing of another modality. Vision and audition represent two important senses needed to navigate through space and time. Therefore, the current systematic review discusses the cross-modal behavioral and neural consequences of deafness and blindness by focusing on spatial and temporal processing abilities, respectively. In addition, movement processing is evaluated as compiling both spatial and temporal information. We examine whether the sense that is not primarily affected changes in its own properties or in the properties of the deprived modality (i.e., temporal processing as the main specialization of audition and spatial processing as the main specialization of vision). References to the metamodal organization, supramodal functioning, and the revised neural recycling theory are made to address global brain organization and plasticity principles. Generally, according to the reviewed studies, behavioral performance is enhanced in those aspects for which both the deprived and the overtaking senses provide adequate processing resources. Furthermore, the behavioral enhancements observed in the overtaking sense (i.e., vision in the case of deafness and audition in the case of blindness) are clearly limited by the processing resources of the overtaking modality. Thus, the brain regions that were previously recruited during the behavioral performance of the deprived sense now support a similar behavioral performance for the overtaking sense. This finding suggests a more input-unspecific and processing principle-based organization of the brain. Finally, we highlight the importance of controlling for and stating factors that might impact neural plasticity and the need for further research into visual temporal processing in deaf subjects.


2020 ◽  
Vol 4 (4) ◽  
pp. 1072-1090 ◽  
Author(s):  
Bertha Vézquez-Rodríguez ◽  
Zhen-Qi Liu ◽  
Patric Hagmann ◽  
Bratislav Misic

The wiring of the brain is organized around a putative unimodal-transmodal hierarchy. Here we investigate how this intrinsic hierarchical organization of the brain shapes the transmission of information among regions. The hierarchical positioning of individual regions was quantified by applying diffusion map embedding to resting-state functional MRI networks. Structural networks were reconstructed from diffusion spectrum imaging and topological shortest paths among all brain regions were computed. Sequences of nodes encountered along a path were then labeled by their hierarchical position, tracing out path motifs. We find that the cortical hierarchy guides communication in the network. Specifically, nodes are more likely to forward signals to nodes closer in the hierarchy and cover a range of unimodal and transmodal regions, potentially enriching or diversifying signals en route. We also find evidence of systematic detours, particularly in attention networks, where communication is rerouted. Altogether, the present work highlights how the cortical hierarchy shapes signal exchange and imparts behaviorally relevant communication patterns in brain networks.


2019 ◽  
Vol 30 (2) ◽  
pp. 824-835 ◽  
Author(s):  
Susanne Weis ◽  
Kaustubh R Patil ◽  
Felix Hoffstaedter ◽  
Alessandra Nostro ◽  
B T Thomas Yeo ◽  
...  

Abstract A large amount of brain imaging research has focused on group studies delineating differences between males and females with respect to both cognitive performance as well as structural and functional brain organization. To supplement existing findings, the present study employed a machine learning approach to assess how accurately participants’ sex can be classified based on spatially specific resting state (RS) brain connectivity, using 2 samples from the Human Connectome Project (n1 = 434, n2 = 310) and 1 fully independent sample from the 1000BRAINS study (n = 941). The classifier, which was trained on 1 sample and tested on the other 2, was able to reliably classify sex, both within sample and across independent samples, differing both with respect to imaging parameters and sample characteristics. Brain regions displaying highest sex classification accuracies were mainly located along the cingulate cortex, medial and lateral frontal cortex, temporoparietal regions, insula, and precuneus. These areas were stable across samples and match well with previously described sex differences in functional brain organization. While our data show a clear link between sex and regionally specific brain connectivity, they do not support a clear-cut dimorphism in functional brain organization that is driven by sex alone.


2008 ◽  
Vol 14 (6) ◽  
pp. 990-1003 ◽  
Author(s):  
BRANDON KEEHN ◽  
LAURIE BRENNER ◽  
ERICA PALMER ◽  
ALAN J. LINCOLN ◽  
RALPH-AXEL MÜLLER

AbstractAlthough previous studies have shown that individuals with autism spectrum disorder (ASD) excel at visual search, underlying neural mechanisms remain unknown. This study investigated the neurofunctional correlates of visual search in children with ASD and matched typically developing (TD) children, using an event-related functional magnetic resonance imaging design. We used a visual search paradigm, manipulating search difficulty by varying set size (6, 12, or 24 items), distractor composition (heterogeneous or homogeneous) and target presence to identify brain regions associated with efficient and inefficient search. While the ASD group did not evidence accelerated response time (RT) compared with the TD group, they did demonstrate increased search efficiency, as measured by RT by set size slopes. Activation patterns also showed differences between ASD group, which recruited a network including frontal, parietal, and occipital cortices, and the TD group, which showed less extensive activation mostly limited to occipito-temporal regions. Direct comparisons (for both homogeneous and heterogeneous search conditions) revealed greater activation in occipital and frontoparietal regions in ASD than in TD participants. These results suggest that search efficiency in ASD may be related to enhanced discrimination (reflected in occipital activation) and increased top-down modulation of visual attention (associated with frontoparietal activation). (JINS, 2008, 14, 990–1003.)


2018 ◽  
Vol 3 (2) ◽  
pp. 59-64
Author(s):  
Xiping Liu ◽  
Yasutomo Imai ◽  
Yan Zhou ◽  
Sebastian Yu ◽  
Rupeng Li ◽  
...  

Functional connectivity magnetic resonance imaging (fcMRI), a specific form of MRI imaging, quantitatively assesses connectivity between brain regions that share functional properties. Functional connectivity magnetic resonance imaging has already provided unique insights into changes in the brain in patients with conditions such as depression and pain and symptoms that have been reported by patients with psoriasis and are known to impact quality of life. To identify the central neurological impact of psoriasiform inflammation of the skin, we applied fcMRI analysis to mice that had been topically treated with the Toll-like receptor agonist, imiquimod (IMQ) to induce psoriasiform dermatitis. Brain insula regions, due to their suggested role in stress, were chosen as seed regions for fcMRI analysis. Mouse ear and head skin developed psoriasiform epidermal thickening (up to 4-fold, P < .05) and dermal inflammation after 4 days of topical treatment with IMQ. After fcMRI analysis, IMQ-treated mice showed significantly increased insula fc with wide areas throughout the brain, including, but not limited to, the somatosensory cortex, anterior cingulate cortex, and caudate putamen ( P < .005). This reflects a potential central neurological impact of IMQ-induced psoriasis-like skin inflammation. These data indicate that fcMRI may be valuable tool to quantitatively assess the neurological impact of skin inflammation in patients with psoriasis.


2021 ◽  
pp. 1-37
Author(s):  
Benjamin Chiêm ◽  
Frédéric Crevecoeur ◽  
Jean-Charles Delvenne

Abstract Describing how the brain anatomical wiring contributes to the emergence of coordinated neural activity underlying complex behavior remains challenging. Indeed, patterns of remote coactivations that adjust with the ongoing task-demand do not systematically match direct, static anatomical links. Here, we propose that observed coactivation patterns, known as Functional Connectivity (FC), can be explained by a controllable linear diffusion dynamics defined on the brain architecture. Our model, termed structure-informed FC, is based on the hypothesis that different sets of brain regions controlling the information flow on the anatomical wiring produce state-specific functional patterns. We thus introduce a principled framework for the identification of potential control centers in the brain. We find that well-defined, sparse and robust sets of control regions, partially overlapping across several tasks and resting-state, produce FC patterns comparable to empirical ones. Our findings suggest that controllability is a fundamental feature allowing the brain to reach different states.


2019 ◽  
Author(s):  
František Váša ◽  
Rafael Romero-Garcia ◽  
Manfred G. Kitzbichler ◽  
Jakob Seidlitz ◽  
Kirstie J. Whitaker ◽  
...  

AbstractAdolescent changes in human brain function are not entirely understood. Here we used multi-echo functional magnetic resonance imaging (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in N=298 healthy adolescents. Participants were aged 14-26 years and were scanned on two or more occasions at least 6 months apart. We found two distinct modes of age-related change in FC: “conservative” and “disruptive”. Conservative development was characteristic of primary cortex, which was strongly connected at 14 years and became even more connected in the period 14-26 years. Disruptive development was characteristic of association cortex, hippocampus and amygdala, which were not strongly connected at 14 years but became more strongly connected during adolescence. We defined the maturational index (MI) as the signed coefficient of the linear relationship between baseline FC (at 14 years,FC14) and adolescent change in FC (∆FC14−26). Disruptive systems (with negative MI) were functionally specialised for social cognition and autobiographical memory and were significantly co-located with prior maps of aerobic glycolysis (AG), AG-related gene expression, post-natal expansion of cortical surface area, and adolescent shrinkage of cortical depth. We conclude that human brain organization is disrupted during adolescence by the emergence of strong functional connectivity of subcortical nuclei and association cortical areas, representing metabolically expensive re-modelling of synaptic connectivity between brain regions that were not strongly connected in childhood. We suggest that this re-modelling process may support emergence of social skills and self-awareness during healthy human adolescence.


Sign in / Sign up

Export Citation Format

Share Document