scholarly journals Solar-to-hydrogen peroxide energy conversion on resorcinol–formaldehyde resin photocatalysts prepared by acid-catalysed polycondensation

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yasuhiro Shiraishi ◽  
Takumi Hagi ◽  
Masako Matsumoto ◽  
Shunsuke Tanaka ◽  
Satoshi Ichikawa ◽  
...  

AbstractThe photocatalytic generation of hydrogen peroxide from water and dioxygen (H2O + 1/2O2 → H2O2, ΔG° = +117 kJ mol–1) under sunlight is a promising strategy for the artificial photosynthesis of a liquid fuel. We had previously found that resorcinol–formaldehyde (RF) resin powders prepared by the base-catalysed high-temperature hydrothermal method act as semiconductor photocatalysts for H2O2 generation. Herein, we report that RF resins prepared by the acid-catalysed high-temperature hydrothermal method (~523 K) using common acids at pH < 4 exhibit enhanced photocatalytic activity. The base- and acid-catalysed methods both produce methylene- and methine-bridged resins consisting of π-conjugated and π-stacked benzenoid–quinoid donor–acceptor resorcinol units. The acidic conditions result in the resins with a lower bandgap (1.7 eV) and higher conductivity because the lower-degree of crosslinking creates a strongly π-stacked architecture. The irradiation of the RF-acid resins with simulated sunlight in water with atmospheric-pressure O2 generates H2O2 at a solar-to-chemical conversion efficiency of 0.7%, which is the highest efficiency ever reported for powder catalysts used in artificial photosynthesis.

2020 ◽  
Author(s):  
Yasuhiro Shiraishi ◽  
Takumi Hagi ◽  
Masako Matsumoto ◽  
Shunsuke Tanaka ◽  
Satoshi Ichikawa ◽  
...  

Abstract The photocatalytic generation of hydrogen peroxide from water and dioxygen (H2O + 1/2O2 → H2O2, ΔG° = +117 kJ mol-1) under sunlight is a promising strategy for the artificial photosynthesis of a liquid fuel. We had previously found that resorcinol-formaldehyde (RF) resin powders prepared by the base-catalysed high-temperature hydrothermal method act as semiconductor photocatalysts for H2O2 generation. Herein, we report that RF resins prepared by the acid-catalysed high-temperature hydrothermal method (~523 K) using common acids at pH < 4 exhibit enhanced photocatalytic activity. The base- and acid-catalysed methods both produce methylene- and methine-bridged resins consisting of π-conjugated and π-stacked benzenoid-quinoid donor-acceptor resorcinol units. The acidic conditions result in the resins with a lower bandgap (1.7 eV) and higher conductivity because the lower degree of crosslinking creates a strongly π-stacked architecture. The irradiation of the RF-acid resins with simulated sunlight in water with atmospheric-pressure O2 generates H2O2 at a solar-to-chemical conversion efficiency of 0.7%, which is the highest efficiency ever reported for powder catalysts used in artificial photosynthesis.


RSC Advances ◽  
2015 ◽  
Vol 5 (116) ◽  
pp. 95744-95749 ◽  
Author(s):  
Jiangling He ◽  
Bingfu Lei ◽  
Haoran Zhang ◽  
Mingtao Zheng ◽  
Hanwu Dong ◽  
...  

The strategy for the formation mechanism of N-CDs under high temperature and high pressure can be summarized as consisting of two parts including top-down and bottom-up. It can serve as an efficient way to express the detailed formation process of N-CDs.


Author(s):  
J. G. Robertson ◽  
D. F. Parsons

The extraction of lipids from tissues during fixation and embedding for electron microscopy is widely recognized as a source of possible artifact, especially at the membrane level of cell organization. Lipid extraction is also a major disadvantage in electron microscope autoradiography of radioactive lipids, as in studies of the uptake of radioactive fatty acids by intestinal slices. Retention of lipids by fixation with osmium tetroxide is generally limited to glycolipids, phospholipids and highly unsaturated neutral lipids. Saturated neutral lipids and sterols tend to be easily extracted by organic dehydrating reagents prior to embedding. Retention of the more saturated lipids in embedded tissue might be achieved by developing new cross-linking reagents, by the use of highly water soluble embedding materials or by working at very low temperatures.


2021 ◽  
Vol 4 (5) ◽  
pp. 374-384 ◽  
Author(s):  
Zhenyuan Teng ◽  
Qitao Zhang ◽  
Hongbin Yang ◽  
Kosaku Kato ◽  
Wenjuan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document