scholarly journals Optimal probes for global quantum thermometry

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wai-Keong Mok ◽  
Kishor Bharti ◽  
Leong-Chuan Kwek ◽  
Abolfazl Bayat

AbstractQuantum thermodynamics has emerged as a separate sub-discipline, revising the concepts and laws of thermodynamics, at the quantum scale. In particular, there has been a disruptive shift in the way thermometry, and thermometers are perceived and designed. Currently, we face two major challenges in quantum thermometry. First, all of the existing optimally precise temperature probes are local, meaning their operation is optimal only for a narrow range of temperatures. Second, aforesaid optimal local probes mandate complex energy spectrum with immense degeneracy, rendering them impractical. Here, we address these challenges by formalizing the notion of global thermometry leading to the development of optimal temperature sensors over a wide range of temperatures. We observe the emergence of different phases for such optimal probes as the temperature interval is increased. In addition, we show how the best approximation of optimal global probes can be realized in spin chains, implementable in ion traps and quantum dots.

Author(s):  
G. Rossini ◽  
A. Caimi ◽  
A. Redaelli ◽  
E. Votta

AbstractA Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range ($$0.36-0.87$$ 0.36 - 0.87 ) with a strong correlation with the organ length-scale radial strain ($$R^{2}= 0.95$$ R 2 = 0.95 ); conversely, circumferential cell strains spanned a very narrow range ($$0.75-0.88$$ 0.75 - 0.88 ) showing no correlation with the circumferential strain at the organ level ($$R^{2}= 0.02$$ R 2 = 0.02 ). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.


1996 ◽  
Vol 82 (3_suppl) ◽  
pp. 1371-1376 ◽  
Author(s):  
Kimihiko Yamagishi

Frequency estimation of social facts was compared between two methods of response elicitation. In the “narrow range” method, respondents answered questions like: “Out of 100 instances, how many instances belong to category X?”. In the “wide range” method, the same question was asked regarding “Out of 10,000.” A previous study in 1994 showed that judged frequencies were proportionally greater in the narrow condition than in the wide condition when subjects estimated the occurrence of low-frequency events. These results were interpreted to reflect cognitive processes of anchoring, wherein judged frequencies he close to small numbers within particular response ranges. The current work extends this argument to high-frequency events. In such cases, judgments about high-frequency events would be reached by similar cognitive processes operating toward the opposite direction. Hence, I predicted that judged frequencies for high-frequency events would be proportionally greater in the wide than in the narrow condition. Results were mostly consistent with these predictions. The relation to previous research is discussed.


Author(s):  
Ashraf A. Zaher

Many real-world applications depend on temperature sensing and/or control. This includes a wide range of industrial processes, chemical reactors, and SCADA systems, in addition to other physical, mechanical, and biological systems. With the advancement of technology, it became possible to produce a new generation of smart and compact temperature sensors, which are capable of providing digital outputs that are more accurate, robust, and easily interfaced and integrated into measurement and control systems. This chapter first surveys traditional analog temperature sensors, such as RTDs and thermocouples, to provide a strong motivation for the need to adopt better and smarter techniques that mainly rely on digital technology (e.g., CMOS designs). Different interfacing techniques that do not need ADCs are introduced, including the programmable Arduino microcontrollers. Different applications will be explored that include automotive accessories, weather forecast, healthcare, industrial processing, firefighting, and consumer electronics. Both wired and wireless technologies, including the IoT, will be investigated as means for transmitting the sensed data for further processing and data logging. A special case study to provide information redundancy in industrial SCADA systems will be analyzed to illustrate the advantages and limitations of smart temperature sensors. The chapter concludes with a summary of the design effort, accuracy, performance, and cost effectiveness of smart temperature sensors while highlighting future trends in this field for different applications.


2020 ◽  
Vol 40 (9/10) ◽  
pp. 1021-1039
Author(s):  
Kaz Stuart ◽  
Mark A. Faghy ◽  
Elaine Bidmead ◽  
Ruth Browning ◽  
Catriona Roberts ◽  
...  

PurposeThis paper proposes a biopsychosocial (BPS) analysis of COVID-19 experiences which enhances understanding of complex and interrelated factors and leads to the proposition of a BPS recovery framework.Design/methodology/approachOnline narrative research was used to explore people's experiences of COVID-19 and was conducted over a four-month period. The call was distributed via a short open-ended qualitative online survey advertised on social media platforms and 305 responses came from across England.FindingsThe findings illustrate people with a narrow range of BPS characteristics experienced over a wide range of BPS impacts which are nuanced, complex and dynamic. Left unaddressed these may create future adverse BPS characteristics. An integrated BPS framework for recovery is proposed to avoid such further negative outcomes from the pandemic.Research limitations/implicationsThe sample contained a bias in age, gender and living arrangements.Practical implicationsThe paper offers a clear framework to enable integrated holistic recovery/regrowth planning.Social implicationsUsing the framework would reduce social and health inequities which have been recently deepened by COVID-19 in the long-term.Originality/valueThe paper is original in its use of a BPS analytical framework.


2019 ◽  
Vol 117 (2) ◽  
pp. 1191-1200 ◽  
Author(s):  
Thierri Callier ◽  
Nathan W. Brantly ◽  
Attilio Caravelli ◽  
Sliman J. Bensmaia

Intracortical microstimulation (ICMS) of the somatosensory cortex evokes vivid tactile sensations and can be used to convey sensory feedback from brain-controlled bionic hands. Changes in ICMS frequency lead to changes in the resulting sensation, but the discriminability of frequency has only been investigated over a narrow range of low frequencies. Furthermore, the sensory correlates of changes in ICMS frequency remain poorly understood. Specifically, it remains to be elucidated whether changes in frequency only modulate sensation magnitude—as do changes in amplitude—or whether they also modulate the quality of the sensation. To fill these gaps, we trained monkeys to discriminate the frequency of ICMS pulse trains over a wide range of frequencies (from 10 to 400 Hz). ICMS amplitude also varied across stimuli to dissociate sensation magnitude from ICMS frequency and ensure that animals could not make frequency judgments based on magnitude. We found that animals could consistently discriminate ICMS frequency up to ∼200 Hz but that the sensory correlates of frequency were highly electrode dependent: On some electrodes, changes in frequency were perceptually distinguishable from changes in amplitude—seemingly giving rise to a change in sensory quality; on others, they were not. We discuss the implications of our findings for neural coding and for brain-controlled bionic hands.


1959 ◽  
Vol 14 (6) ◽  
pp. 905-908 ◽  
Author(s):  
N. R. Frank

The effects of acute reversible pulmonary vascular congestion on the elastic behavior of excised cats' lungs were studied in 10 preparations. Measurements were made of changes in airway pressure at constantly held lung volumes over a wide range of deflation. To achieve vascular congestion left atrial pressure was raised to 20 and 30 cm H2O. Two effects were noted; one was that the slope of the volume-pressure relations of the lungs was slightly reduced at all levels of deflation, the other, the effect of vascular congestion on the recoiling force of the lungs was a function of the volume of the lungs at which congestion was induced. At large volumes (airway pressures of 5 cm H2O or more) recoiling force was increased; at intermediate volumes (airway pressures of 2.5 and 3 cm H2O) the change was negligible and, at smaller volumes, it was reduced in a manner consistent with the early work of von Basch. The findings suggest that there is a volume of the lungs, or perhaps a narrow range of volume, at which the lungs and blood vessels exert least mechanical stress on each other. This volume is believed to lie close to that in which tidal breathing occurs. Note: (With the Technical Assistance of Elcanor Gotz) Submitted on April 17, 1959


1985 ◽  
Vol 36 (3) ◽  
pp. 347 ◽  
Author(s):  
JL Davidson ◽  
KR Christian ◽  
DB Jones ◽  
PM Bremner

The effects of vernalization and photoperiod on times from planting of seedlings to ear emergence were measured in 68 Australian and 49 overseas varieties of wheat, comprising a broad spectrum of genetic material, in a glasshouse in Canberra (latitude 35�S). Vernalization was carried out by growing germinated seedlings in the dark at 1-2�C for 6 weeks. Long photoperiods (16 h) separated unvernalized plants into two distinct groups, corresponding to commonly recognized spring and winter types. Responses to vernalization were generally small under natural photoperiods (11-15 h), but much more pronounced in long photoperiods, particularly with winter wheats. In a second experiment, 24 varieties of wheat gave widely different responses to vernalization treatments. With 8 weeks' vernalization and long photoperiods, all varieties reached ear emergence within 66 days, but in some winter wheats 4 weeks treatment had little effect and 6 weeks gave incomplete vernalization. Under the conditions of these experiments, Australian wheats showed a wide range of responses to photoperiod and a narrow range of responses to vernalization compared with overseas varieties. The need to investigate the control of flowering time in obtaining varieties suited to the high-rainfall zone of Australia is discussed.


2017 ◽  
Vol 24 (03) ◽  
pp. 1740007 ◽  
Author(s):  
R. Alicki

The mathematically sound theory of quantum open systems, formulated in the ’70s and highlighted by the discovery of Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation, found a wide range of applications in various branches of physics and chemistry, notably in the field of quantum information and quantum thermodynamics. However, it took 40 years before this formalism has been applied to explain correctly the operation principles of long existing energy transducers like photovoltaic, thermoelectric and fuel cells. This long path is briefly reviewed from the author’s perspective. Finally, the new, fully quantum model of chemical engine based on GKLS equation and applicable to fuel cells or replicators is outlined. The model illustrates the difficulty with an entirely quantum operational definition of work, comparable to the problem of quantum measurement.


2014 ◽  
Author(s):  
Catalin Fetecau ◽  
Felicia Stan ◽  
Laurentiu I. Sandu

This paper focuses on the in-mold monitoring of temperature and cavity pressure. The melt contact temperature and the cavity pressure along the flow path were directly measured using two pressure sensors and two temperature sensors fitted into the cavity of a spiral mold. Three melt temperatures and dies of different heights (1.0, 1.5 and 2 mm) were used to achieve a wide range of practically relevant shear rates. In order to analyze the extent to which the numerical simulation can predict the behavior of the molten polymer during the injection molding process, molding experiments were simulated using the Moldflow software and the simulation results were compared with the experimental data under the same injection molding conditions.


1983 ◽  
Vol 23 (01) ◽  
pp. 73-80 ◽  
Author(s):  
E.E. Klaus ◽  
J.H. Jones ◽  
R. Nagarajan ◽  
T. Ertekin ◽  
Y.M. Chung ◽  
...  

Klaus, E.E., Pennsylvania State U. Jones, J.H., Pennsylvania State U. Nagarajan, R., Pennsylvania State U. Ertekin, T., SPE. Pennsylvania State U. Chung, Y.M., Pennsylvania State U. Arf, G., Pennsylvania State U. Yarzumbeck, A.J., Pennsylvania State U. Dudenas, P., Pennsylvania State U. Abstract Saturated paraffinic and naphthenic hydrocarbons without aromatics have been vapor-phase oxidized to produce cyclic ethers and lesser amounts of olefins. These cyclic ethers appear to be effective cosurfactants for the preparation of slugs containing petroleum sulfonate surfactants. The cyclic-ether/olefin mixture has been reacted with SO from oleum or liquid SO to form sulfonates comprising a mixture of mono-, di-, and polysulfonates. The reaction products consisting of the sulfonates, unreacted oxidized products, and residual hydrocarbons have been extracted with isopropanol (IPA) to give two sulfonate fractions. The first fraction is predominantly monosulfonate with lesser quantities of disulfonates. The second fraction consists primarily of di-, tri-, and polysulfonates. The monosulfonate fraction in a low-concentration slug exhibits ultralow interfacial tension (IFT) against hydrocarbons of low equivalent alkane carbon number (EACN). The behavior of this fraction is similar to that of the commercial sulfonates in that its ability to generate low IFT is confined to a narrow range of EACN. To achieve low IFT's at higher EACN in the range of a Pennsylvania crude oil, it is necessary to raise the equivalent weight of the Pennsylvania State U. monosulfonate fraction by blending with a commercial sulfonate of higher equivalent weight. Recent studies show that by mixing, the two IPA fractions of the sulfonation products. a remarkably new surfactant behavior is obtained. In contrast to the behavior of other surfactants that yield ultralow tensions over only a narrow range of values of EACN, this mixture of mono- and polysulfonates generates low IFT's over a wide range of EACN extending from C5 to C12. The salt tolerance of monosulfonates and polysulfonates, either alone or in mixtures. is rather high and even at about 4 wt% NaC1, the surfactant solutions remain stable and yield low IFT's against crude oil. Introduction Chemical flooding processes for terliary oil recovery based on both low-concentration surfactant solutions (typically 2 to 3 wt% or less) and high-concentration surfactant solutions (about 10 wt%) are being investigated in a number of laboratory and field studies. In both types of processes, the ability of surfactant solutions to lower the IFT against crude oil is a major factor determining the oil displacement efficiency. A variety of surfactants, primarily sulfonates synthesized from aromatics present in petroleum fractions, have been identified as those possessing the physical and chemical properties required for the flooding process. The surfactant slug formulations typically consist of the sulfonates, electrolytes, and cosurfactants such as alcohols. The slug, when contacted with oil, can generate a microemulsion phase coexisting with oil and water phases. Low IFT's are found to occur at those conditions that favor the formation of the preceding three phases. Several investigations have focused on determining the conditions for the three- phase formation and IFT lowering in terms of the molecular structure and the molecular weight of the surfactant, the characteristics of the oil (namely, its EACN), salinity, surfactant concentration, and the type and amount of cosurfactant, if used. SPEJ P. 73^


Sign in / Sign up

Export Citation Format

Share Document