scholarly journals Author Correction: Terahertz strong-field physics in light-emitting diodes for terahertz detection and imaging

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chen Ouyang ◽  
Shangqing Li ◽  
Jinglong Ma ◽  
Baolong Zhang ◽  
Xiaojun Wu ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s42005-021-00592-6

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chen Ouyang ◽  
Shangqing Li ◽  
Jinglong Ma ◽  
Baolong Zhang ◽  
Xiaojun Wu ◽  
...  

AbstractIntense terahertz (THz) electromagnetic fields have been utilized to reveal a variety of extremely nonlinear optical effects in many materials through nonperturbative driving of elementary and collective excitations. However, such nonlinear photoresponses have not yet been obeserved in light-emitting diodes (LEDs), let alone employing them as fast, cost-effective, compact, and room-temperature-operating THz detectors and cameras. Here, we report ubiquitously available LEDs exhibiting photovoltaic signals of ~0.8 V and ~2 ns response time with signal-to-noise ratios of ~1300 when being illuminated by THz field strengths ~240 kV/cm. We also demonstrated THz-LED detectors and camera prototypes. These unorthodox THz detectors exhibited high responsivities (>1 kV/W) with response time four orders of magnitude shorter than those of pyroelectric detectors. The mechanism was attributed to THz-field-induced impact ionization and Schottky contact. These findings not only help deepen our understanding of strong THz field-matter interactions but also contribute to the applications of strong-field THz diagnosis.


2000 ◽  
Vol 660 ◽  
Author(s):  
Thomas M. Brown ◽  
Ian S. Millard ◽  
David J. Lacey ◽  
Jeremy H. Burroughes ◽  
Richard H. Friend ◽  
...  

ABSTRACTThe semiconducting-polymer/injecting-electrode heterojunction plays a crucial part in the operation of organic solid state devices. In polymer light-emitting diodes (LEDs), a common fundamental structure employed is Indium-Tin-Oxide/Polymer/Al. However, in order to fabricate efficient devices, alterations to this basic structure have to be carried out. The insertion of thin layers, between the electrodes and the emitting polymer, has been shown to greatly enhance LED performance, although the physical mechanisms underlying this effect remain unclear. Here, we use electro-absorption measurements of the built-in potential to monitor shifts in the barrier height at the electrode/polymer interface. We demonstrate that the main advantage brought about by inter-layers, such as poly(ethylenedioxythiophene)/poly(styrene sulphonic acid) (PEDOT:PSS) at the anode and Ca, LiF and CsF at the cathode, is a marked reduction of the barrier to carrier injection. The electro- absorption results also correlate with the electroluminescent characteristics of the LEDs.


2003 ◽  
Vol 764 ◽  
Author(s):  
X. A. Cao ◽  
S. F. LeBoeuf ◽  
J. L. Garrett ◽  
A. Ebong ◽  
L. B. Rowland ◽  
...  

Absract:Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.


Sign in / Sign up

Export Citation Format

Share Document