scholarly journals Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality

2020 ◽  
Vol 2 (8) ◽  
pp. 732-743
Author(s):  
David Legouis ◽  
Sven-Erick Ricksten ◽  
Anna Faivre ◽  
Thomas Verissimo ◽  
Karim Gariani ◽  
...  
2020 ◽  
Vol 2 (9) ◽  
pp. 989-989
Author(s):  
David Legouis ◽  
Sven-Erick Ricksten ◽  
Anna Faivre ◽  
Thomas Verissimo ◽  
Karim Gariani ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Beatriz Fernandez-Fernandez ◽  
Ana Montoya-Ferrer ◽  
Ana B. Sanz ◽  
Maria D. Sanchez-Niño ◽  
Maria C. Izquierdo ◽  
...  

Tenofovir is an acyclic nucleotide analogue reverse-transcriptase inhibitor structurally similar to the nephrotoxic drugs adefovir and cidofovir. Tenofovir is widely used to treat HIV infection and approved for treatment of hepatitis B virus. Despite initial cell culture and clinical trials results supporting the renal safety of tenofovir, its clinical use is associated with a low, albeit significant, risk of kidney injury. Proximal tubular cell secretion of tenofovir explains the accumulation of the drug in these mitochondria-rich cells. Tenofovir nephrotoxicity is characterized by proximal tubular cell dysfunction that may be associated with acute kidney injury or chronic kidney disease. Withdrawal of the drug leads to improvement of analytical parameters that may be partial. Understanding the risk factors for nephrotoxicity and regular monitoring of proximal tubular dysfunction and serum creatinine in high-risk patients is required to minimize nephrotoxicity. Newer, structurally similar molecular derivatives that do not accumulate in proximal tubules are under study.


2018 ◽  
Vol 115 (7) ◽  
pp. E1475-E1484 ◽  
Author(s):  
Wenjing Liu ◽  
Binbin Chen ◽  
Yang Wang ◽  
Chenling Meng ◽  
Huihui Huang ◽  
...  

Tubular cell necrosis is a key histological feature of acute kidney injury (AKI). Necroptosis is a type of programed necrosis, which is executed by mixed lineage kinase domain-like protein (MLKL) upon its binding to the plasma membrane. Emerging evidence indicates that necroptosis plays a critical role in the development of AKI. However, it is unclear whether renal tubular cells undergo necroptosis in vivo and how the necroptotic pathway is regulated during AKI. Repulsive guidance molecule (RGM)-b is a member of the RGM family. Our previous study demonstrated that RGMb is highly expressed in kidney tubular epithelial cells, but its biological role in the kidney has not been well characterized. In the present study, we found that RGMb reduced membrane-associated MLKL levels and inhibited necroptosis in cultured cells. During ischemia/reperfusion injury (IRI) or oxalate nephropathy, MLKL was induced to express on the apical membrane of proximal tubular (PT) cells. Specific knockout of Rgmb in tubular cells (Rgmb cKO) increased MLKL expression at the apical membrane of PT cells and induced more tubular cell death and more severe renal dysfunction compared with wild-type mice. Treatment with the necroptosis inhibitor Necrostatin-1 or GSK′963 reduced MLKL expression on the apical membrane of PT cells and ameliorated renal function impairment after IRI in both wild-type and Rgmb cKO mice. Taken together, our results suggest that proximal tubular cell necroptosis plays an important role in AKI, and that RGMb protects against AKI by inhibiting MLKL membrane association and necroptosis in proximal tubular cells.


2016 ◽  
Vol 27 (10) ◽  
pp. 3051-3062 ◽  
Author(s):  
Thomas Seppi ◽  
Sinikka Prajczer ◽  
Maria-Magdalena Dörler ◽  
Oliver Eiter ◽  
Daniel Hekl ◽  
...  

2013 ◽  
Vol 304 (8) ◽  
pp. F1054-F1065 ◽  
Author(s):  
Punithavathi Ranganathan ◽  
Calpurnia Jayakumar ◽  
Ganesan Ramesh

Acute kidney injury-induced organ fibrosis is recognized as a major risk factor for the development of chronic kidney disease, which remains one of the leading causes of death in the developed world. However, knowledge on molecules that may suppress the fibrogenic response after injury is lacking. In ischemic models of acute kidney injury, we demonstrate a new function of netrin-1 in regulating interstitial fibrosis. Acute injury was promptly followed by a rise in serum creatinine in both wild-type and netrin-1 transgenic animals. However, the wild-type showed a slow recovery of kidney function compared with netrin-1 transgenic animals and reached baseline by 3 wk. Histological examination showed increased infiltration of interstitial macrophages, extensive fibrosis, reduction of capillary density, and glomerulosclerosis. Collagen IV and α-smooth muscle actin expression was absent in sham-operated kidneys; however, their expression was significantly increased at 2 wk and peaked at 3 wk after reperfusion. These changes were reduced in the transgenic mouse kidney, which overexpresses netrin-1 in proximal tubular epithelial cells. Fibrosis was associated with increased expression of IL-6 and extensive and chronic activation of STAT3. Administration of IL-6 exacerbated fibrosis in vivo in wild-type, but not in netrin-1 transgenic mice kidney and increased collagen I expression and STAT3 activation in vitro in renal epithelial cells subjected to hypoxia-reoxygenation, which was suppressed by netrin-1. Our data suggest that proximal tubular epithelial cells may play a prominent role in interstitial fibrosis and that netrin-1 could be a useful therapeutic agent for treating kidney fibrosis.


Sign in / Sign up

Export Citation Format

Share Document