scholarly journals Earth’s core could be the largest terrestrial carbon reservoir

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Suraj K. Bajgain ◽  
Mainak Mookherjee ◽  
Rajdeep Dasgupta

AbstractEvaluating carbon’s candidacy as a light element in the Earth’s core is critical to constrain the budget and planet-scale distribution of this life-essential element. Here we use first principles molecular dynamics simulations to estimate the density and compressional wave velocity of liquid iron-carbon alloys with ~4-9 wt.% carbon at 0-360 gigapascals and 4000-7000 kelvin. We find that for an iron-carbon binary system, ~1-4 wt.% carbon can explain seismological compressional wave velocities. However, this is incompatible with the ~5-7 wt.% carbon that we find is required to explain the core’s density deficit. When we consider a ternary system including iron, carbon and another light element combined with additional constraints from iron meteorites and the density discontinuity at the inner-core boundary, we find that a carbon content of the outer core of 0.3-2.0 wt.%, is able to satisfy both properties. This could make the outer core the largest reservoir of terrestrial carbon.

2020 ◽  
Vol 105 (9) ◽  
pp. 1349-1354
Author(s):  
Jie Fu ◽  
Lingzhi Cao ◽  
Xiangmei Duan ◽  
Anatoly B. Belonoshko

Abstract Pressure-temperature-volume (P-T-V) data on liquid iron-sulfur (Fe-S) alloys at the Earth's outer core conditions (~136 to 330 GPa, ~4000 to 7000 K) have been obtained by first-principles molecular dynamics simulations. We developed a thermal equation of state (EoS) composed of Murnaghan and Mie-Grüneisen-Debye expressions for liquid Fe-S alloys. The density and sound velocity are calculated and compared with Preliminary Reference Earth Model (PREM) to constrain the S concentration in the outer core. Since the temperature at the inner core boundary (TICB) has not been measured precisely (4850~7100 K), we deduce that the S concentration ranges from 10~14 wt% assuming S is the only light element. Our results also show that Fe-S alloys cannot satisfy the seismological density and sound velocity simultaneously and thus S element is not the only light element. Considering the geophysical and geochemical constraints, we propose that the outer core contains no more than 3.5 wt% S, 2.5 wt% O, or 3.8 wt% Si. In addition, the developed thermal EoS can be utilized to calculate the thermal properties of liquid Fe-S alloys, which may serve as the fundamental parameters to model the Earth's outer core.


2021 ◽  
Vol 9 ◽  
Author(s):  
Meryem Berrada ◽  
Richard A. Secco

There is a considerable amount of literature on the electrical resistivity of iron at Earth’s core conditions, while only few studies have considered iron and iron-alloys at other planetary core conditions. Much of the total work has been carried out in the past decade and a review to collect data is timely. High pressures and temperatures can be achieved with direct measurements using a diamond-anvil cell, a multi-anvil press or shock compression methods. The results of direct measurements can be used in combination with first-principle calculations to extrapolate from laboratory temperature and pressure to the relevant planetary conditions. This review points out some discrepancies in the electrical resistivity values between theoretical and experimental studies, while highlighting the negligible differences arising from the selection of pressure and temperature values at planetary core conditions. Also, conversions of the reported electrical resistivity values to thermal conductivity via the Wiedemann-Franz law do not seem to vary significantly even when the Sommerfeld value of the Lorenz number is used in the conversion. A comparison of the rich literature of electrical resistivity values of pure Fe at Earth’s core-mantle boundary and inner-core boundary conditions with alloys of Fe and light elements (Si, S, O) does not reveal dramatic differences. The scarce literature on the electrical resistivity at the lunar core suggests the effect of P on a wt% basis is negligible when compared to that of Si and S. On the contrary, studies at Mercury’s core conditions suggest two distinct groups of electrical resistivity values but only a few studies apply to the inner-core boundary. The electrical resistivity values at the Martian core-mantle boundary conditions suggest a negligible contribution of Si, S and O. In contrast, Fe-S compositions at Ganymede’s core-mantle boundary conditions result in large deviations in electrical resistivity values compared to pure Fe. Contour maps of the reported values illustrate ρ(P, T) for pure Fe and its alloys with Ni, O and Si/S and allow for estimates of electrical resistivity at the core-mantle boundary and inner-core boundary conditions for the cores of terrestrial-like planetary bodies.


2003 ◽  
Vol 67 (1) ◽  
pp. 113-123 ◽  
Author(s):  
D. Alfé ◽  
M. J. Gillan ◽  
G. D. Price

AbstractWe summarize the main ideas used to determine the thermodynamic properties of pure systems and binary alloys from first principles calculations. These are based on the ab initio calculations of free energies. As an application we present the study of iron and iron alloys under Earth,s core conditions. In particular, we report the whole melting curve of iron under these conditions, and we put constraints on the composition of the core. We found that iron melts at 6350士600 K at the pressure corresponding to the boundary between the solid inner core and the liquid outer core (ICB). We show that the core could not have been formed from a binary mixture of Fe with S, Si or O and we propose a ternary or quaternary mixture with 8—10% of S/Si in both liquid and solid and an additional ~8% of oxygen in the liquid. Based on this proposed composition we calculate the shift of melting temperature with respect to the melting temperature of pure Fe of ~—700 K, so that our best estimate for the temperature of the Earth's core at ICB is 5650±600 K.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 59 ◽  
Author(s):  
Hiroki Ichikawa ◽  
Taku Tsuchiya

The earth’s core is thought to be composed of Fe-Ni alloy including substantially large amounts of light elements. Although oxygen, silicon, carbon, nitrogen, sulfur, and hydrogen have been proposed as candidates for the light elements, little is known about the amount and the species so far, primarily because of the difficulties in measurements of liquid properties under the outer core pressure and temperature condition. Here, we carry out massive ab initio computations of liquid Fe-Ni-light element alloys with various compositions under the whole outer core P, T condition in order to quantitatively evaluate their thermoelasticity. Calculated results indicate that Si and S have larger effects on the density of liquid iron than O and H, but the seismological reference values of the outer core can be reproduced simultaneously by any light elements except for C. In order to place further constraints on the outer core chemistry, other information, in particular melting phase relations of iron light elements alloys at the inner core-outer core boundary, are necessary. The optimized best-fit compositions demonstrate that the major element composition of the bulk earth is expected to be CI chondritic for the Si-rich core with the pyrolytic mantle or for the Si-poor core and the (Mg,Fe)SiO3-dominant mantle. But the H-rich core likely causes a distinct Fe depletion for the bulk Earth composition.


2021 ◽  
Author(s):  
Claire Zurkowski ◽  
Barbara Lavina ◽  
Abigail Case ◽  
Kellie Swadba ◽  
Stella Chariton ◽  
...  

Planetary habitability, as we experience on Earth, is linked to a functioning geodynamo which is in part driven by the crystallization of the liquid iron-nickel-alloy core as a planet cools over time. Cosmochemical considerations suggest that sulfur is a candidate light alloying element in rocky planetary cores of varying sizes and oxidation states; such that, iron sulfide phase relations at extreme conditions contribute to outer core thermochemical convection and inner core crystallization in a wide range of planetary bodies. Here we experimentally investigate the structural properties of the Fe-S system and report the discovery of the sulfide, Fe5S2, crystallizing in equilibrium with iron at Earth’s outer core pressures and high temperatures. Using single-crystal X-ray diffraction techniques, Fe5S2 was determined to adopt the complex Ni5As2-type structure (P63cm, Z = 6). These results conclude that Fe5S2 is likely to crystallize at the interface of Earth’s core and mantle and will begin to crystallize during the freezing out of Earth and Venus’ core overtime. The increased metal-metal bonding measured in Fe5S2 compared to the other high P-T iron sulfides may contribute to signatures of higher conductivity from regions of Fe5S2 is crystallization. Fe5S2 could serve as a host for Ni and Si as has been observed in the related meteoritic phase, perryite, (Fe, Ni)8(P, Si)3, adding intricacies to elemental partitioning during inner core crystallization. The stability of Fe5S2 presented here is key to understanding the role of sulfur in the multicomponent crystallization sequences that drive the geodynamics and dictate the structures of Earth and rocky planetary cores.


1964 ◽  
Vol 54 (5A) ◽  
pp. 1299-1313 ◽  
Author(s):  
R. D. Adams ◽  
M. J. Randall

Abstract Detailed study of arrivals from accurately fixed earthquakes has revealed additional complexity in the travel-time curve for PKP. A notation is introduced in which observations are denoted by P′ with a two-letter suffix indicating the branch to which they belong, namely P′AB, P′IJ, P′GH and P′DF. A new velocity solution for the Earth's core has been derived from these observations. This velocity solution differs from those previously suggested in having three discontinuous increases in velocity between the outer and inner core, at levels corresponding to 0.570, 0.455 and 0.362 times the radius of the core. This implies two shells, each between 300 and 400 km thick, surrounding the inner core; in each shell there is a small negative velocity gradient. The outer discontinuity is sufficiently shallow to prevent rays in the outer core from forming a caustic.


2021 ◽  
Author(s):  
Felix Gerick ◽  
Dominique Jault ◽  
Jerome Noir

<p> Fast changes of Earth's magnetic field could be explained by inviscid and diffusion-less quasi-geostrophic (QG) Magneto-Coriolis modes. We present a hybrid QG model with columnar flows and three-dimensional magnetic fields and find modes with periods of a few years at parameters relevant to Earth's core. These fast Magneto-Coriolis modes show strong focusing of their kinetic and magnetic energy in the equatorial region, while maintaining a relatively large spatial structure along the azimuthal direction. Their properties agree with some of the observations and inferred core flows. We find additionally, in contrast to what has been assumed previously, that these modes are not affected significantly by magnetic diffusion. The model opens a new way of inverting geomagnetic observations to the flow and magnetic field deep within the Earth's outer core.</p>


1958 ◽  
Vol 48 (4) ◽  
pp. 301-314
Author(s):  
B. Gutenberg

Abstract More than 700 seismograms of 39 shocks recorded mainly in southern California at epicentral distances between 105 and 140 degrees are used to investigate records of phases which have penetrated the earth's core. Properties of PKIKP, SKP, SKIKP, PKS, and PKIKS are discussed. Portions of travel-time curves of these phases are revised. Travel times of waves starting and ending at the surface of the core, and wave velocities in the core, are recalculated. Between about 1,500 and 1,200 km. from the earth's center in the transition zone from the liquid outer to the probably solid inner core, waves having lengths of the order of 10 km. travel faster than longer waves. This is probably caused by a rather rapid increase in viscosity toward the earth's center in this transition zone.


1973 ◽  
Vol 63 (3) ◽  
pp. 1073-1105 ◽  
Author(s):  
Anthony Qamar

abstract Travel times and amplitudes of PKP and PKKP from three earthquakes and four underground nuclear explosions are presented. Observations of reflected core waves at nearly normal angles of incidence provide new constraints on the average velocities in the inner and outer core. Interpretation of these data suggests that several small but significant changes to Bolt's (1962) core velocity model (T2) are necessary. A revised velocity model KOR5 is given together with the derived travel times that are consistent with the 1968 tables for P. Model KOR5 possesses a velocity in the transition zone which is 112 per cent lower than that in model T2. In addition, KOR5 has a velocity jump at the transition zone boundary (r = 1782 km) of 0.013 km/sec and a jump at the inner core boundary (r = 1213 km) of 0.6 km/sec. These values are, respectively, 1/20 and 2/3 of the corresponding model T2 values.


Sign in / Sign up

Export Citation Format

Share Document