Density and sound velocity of liquid Fe-S alloys at Earth's outer core P-T conditions

2020 ◽  
Vol 105 (9) ◽  
pp. 1349-1354
Author(s):  
Jie Fu ◽  
Lingzhi Cao ◽  
Xiangmei Duan ◽  
Anatoly B. Belonoshko

Abstract Pressure-temperature-volume (P-T-V) data on liquid iron-sulfur (Fe-S) alloys at the Earth's outer core conditions (~136 to 330 GPa, ~4000 to 7000 K) have been obtained by first-principles molecular dynamics simulations. We developed a thermal equation of state (EoS) composed of Murnaghan and Mie-Grüneisen-Debye expressions for liquid Fe-S alloys. The density and sound velocity are calculated and compared with Preliminary Reference Earth Model (PREM) to constrain the S concentration in the outer core. Since the temperature at the inner core boundary (TICB) has not been measured precisely (4850~7100 K), we deduce that the S concentration ranges from 10~14 wt% assuming S is the only light element. Our results also show that Fe-S alloys cannot satisfy the seismological density and sound velocity simultaneously and thus S element is not the only light element. Considering the geophysical and geochemical constraints, we propose that the outer core contains no more than 3.5 wt% S, 2.5 wt% O, or 3.8 wt% Si. In addition, the developed thermal EoS can be utilized to calculate the thermal properties of liquid Fe-S alloys, which may serve as the fundamental parameters to model the Earth's outer core.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Suraj K. Bajgain ◽  
Mainak Mookherjee ◽  
Rajdeep Dasgupta

AbstractEvaluating carbon’s candidacy as a light element in the Earth’s core is critical to constrain the budget and planet-scale distribution of this life-essential element. Here we use first principles molecular dynamics simulations to estimate the density and compressional wave velocity of liquid iron-carbon alloys with ~4-9 wt.% carbon at 0-360 gigapascals and 4000-7000 kelvin. We find that for an iron-carbon binary system, ~1-4 wt.% carbon can explain seismological compressional wave velocities. However, this is incompatible with the ~5-7 wt.% carbon that we find is required to explain the core’s density deficit. When we consider a ternary system including iron, carbon and another light element combined with additional constraints from iron meteorites and the density discontinuity at the inner-core boundary, we find that a carbon content of the outer core of 0.3-2.0 wt.%, is able to satisfy both properties. This could make the outer core the largest reservoir of terrestrial carbon.


2007 ◽  
Vol 3 (S248) ◽  
pp. 374-378
Author(s):  
C. L. Huang

AbstractAt the IAU 26th GA held in Prague in 2006, a new precession model (P03) was recommended and adopted to replace the old one, IAU1976 precession model. This new P03 model is to match the IAU2000 nutation model that is for anelastic Earth model and was adopted in 2003 to replace the previous IAU1980 model. However, this IAU2000 nutation model is also not a perfect one for our complex Earth, as stated in the resolution of IAU nutation working group. The Earth models in the current nutation theories are idealized and too simple, far from the real one. They suffer from several geophysical factors: the an-elasticity of the mantle, the atmospheric loading and wind, the oceanic loading and current, the atmospheric and oceanic tides, the (lateral) heterogeneity of the mantle, the differential rotation between the inner core and the mantle, and various couplings between the fluid outer core and its neighboring solids (mantle and inner core). In this paper, first we give a very brief review of the current theoretical studies of non-rigid Earth nutation, and then focus on the couplings near the core-mantle boundary and the inner core-outer core boundary, including the electro-magnetic, viscous, topographic, and gravitational couplings. Finally, we outline some interesting future studies.


1997 ◽  
Vol 499 ◽  
Author(s):  
George Q. Chen ◽  
Thomas J. Ahrens

ABSTRACTShock-wave experiments on pure iron preheated to 1573 K were conducted in the 17–73 GPa range. The shock-wave equation of state of γ-iron at an initial temperature of 1573 K can be fit with us = 4.102 (0.015) km/s + 1.610(0.014) up with ρo = 7.413±0.012 Mg/m3 We obtain for γ-iron's bulk modulus and pressure derivative the values: 124.7±1.1 GPa and 5.44±0.06, respectively.We present new data for sound velocities in the γ- and liquid-phases. In the γ-phase, to a first approximation, the longitudinal sound velocity is linear with respect to density: Vp = −3.13 (0.72) + 1.119(0.084) p(units for Vp and p are km/s and Mg/m3, respectively). Melting was observed in the highest pressure (about 70–73 GPa) experiments at a calculated shock temperature of 2775±160 K. This result is consistent with a previously calculated melting curve (for ε-iron) which is close to those measured by Boehler [1] and Saxena et al. [2]. The liquid iron sound velocity data yields a Grüneisen parameter value of 1.63±0.28 at 9.37±0.02 Mg/m3 at 71.6 GPa. The quantity γρ is 15.2±2.6 Mg/m3, which agrees with the uncertainty bounds of Brown and McQueen [3] (13.3–19.6 Mg/m3). Based on upward pressure and temperature extrapolation of the melting curve of γ-iron, the estimated inner core-outer core boundary temperature is 5500±400 K, the temperature at the core-mantle boundary on the outer core side is 3930±630 K.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 59 ◽  
Author(s):  
Hiroki Ichikawa ◽  
Taku Tsuchiya

The earth’s core is thought to be composed of Fe-Ni alloy including substantially large amounts of light elements. Although oxygen, silicon, carbon, nitrogen, sulfur, and hydrogen have been proposed as candidates for the light elements, little is known about the amount and the species so far, primarily because of the difficulties in measurements of liquid properties under the outer core pressure and temperature condition. Here, we carry out massive ab initio computations of liquid Fe-Ni-light element alloys with various compositions under the whole outer core P, T condition in order to quantitatively evaluate their thermoelasticity. Calculated results indicate that Si and S have larger effects on the density of liquid iron than O and H, but the seismological reference values of the outer core can be reproduced simultaneously by any light elements except for C. In order to place further constraints on the outer core chemistry, other information, in particular melting phase relations of iron light elements alloys at the inner core-outer core boundary, are necessary. The optimized best-fit compositions demonstrate that the major element composition of the bulk earth is expected to be CI chondritic for the Si-rich core with the pyrolytic mantle or for the Si-poor core and the (Mg,Fe)SiO3-dominant mantle. But the H-rich core likely causes a distinct Fe depletion for the bulk Earth composition.


Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 744 ◽  
Author(s):  
Suguru Takahashi ◽  
Eiji Ohtani ◽  
Daijo Ikuta ◽  
Seiji Kamada ◽  
Tatsuya Sakamaki ◽  
...  

The density and sound velocity structure of the Earth’s interior is modeled on seismological observations and is known as the preliminary reference Earth model (PREM). The density of the core is lower than that of pure Fe, which suggests that the Earth’s core contains light elements. Carbon is one plausible light element that may exist in the core. We determined the equation of state (EOS) of Fe3C based on in situ high-pressure and high-temperature X-ray diffraction experiments using a diamond anvil cell. We obtained the P–V data of Fe3C up to 327 GPa at 300 K and 70–180 GPa up to around 2300 K. The EOS of nonmagnetic (NM) Fe3C was expressed by two models using two different pressure scales and the third-order Birch–Murnaghan EOS at 300 K with the Mie–Grüneisen–Debye EOS under high-temperature conditions. The EOS can be expressed with parameters of V0 = 148.8(±1.0) Å3, K0 = 311.1(±17.1) GPa, K0′ = 3.40(±0.1), γ0 = 1.06(±0.42), and q = 1.92(±1.73), with a fixed value of θ0 = 314 K using the KBr pressure scale (Model 1), and V0 = 147.3(±1.0) Å3, K0 = 323.0(±16.6) GPa, K0′ = 3.43(±0.09), γ0 = 1.37(±0.33), and q = 0.98(±1.01), with a fixed value of θ0 = 314 K using the MgO pressure scale (Model 2). The density of Fe3C under inner core conditions (assuming P = 329 GPa and T = 5000 K) calculated from the EOS is compatible with the PREM inner core.


Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 202-205
Author(s):  
Richard G. Kraus ◽  
Russell J. Hemley ◽  
Suzanne J. Ali ◽  
Jonathan L. Belof ◽  
Lorin X. Benedict ◽  
...  

Terapascal iron-melting temperature The pressure and temperature conditions at which iron melts are important for terrestrial planets because they determine the size of the liquid metal core, an important factor for understanding the potential for generating a radiation-shielding magnetic field. Kraus et al . used laser-driven shock to determine the iron-melt curve up to a pressure of 1000 gigapascals (see the Perspective by Zhang and Lin). This value is about three times that of the Earth’s inner core boundary. The authors found that the liquid metal core lasted the longest for Earth-like planets four to six times larger in mass than the Earth. —BG


1973 ◽  
Vol 63 (3) ◽  
pp. 1073-1105 ◽  
Author(s):  
Anthony Qamar

abstract Travel times and amplitudes of PKP and PKKP from three earthquakes and four underground nuclear explosions are presented. Observations of reflected core waves at nearly normal angles of incidence provide new constraints on the average velocities in the inner and outer core. Interpretation of these data suggests that several small but significant changes to Bolt's (1962) core velocity model (T2) are necessary. A revised velocity model KOR5 is given together with the derived travel times that are consistent with the 1968 tables for P. Model KOR5 possesses a velocity in the transition zone which is 112 per cent lower than that in model T2. In addition, KOR5 has a velocity jump at the transition zone boundary (r = 1782 km) of 0.013 km/sec and a jump at the inner core boundary (r = 1213 km) of 0.6 km/sec. These values are, respectively, 1/20 and 2/3 of the corresponding model T2 values.


2019 ◽  
Vol 104 (11) ◽  
pp. 1603-1607 ◽  
Author(s):  
Kenta Oka ◽  
Kei Hirose ◽  
Shoh Tagawa ◽  
Yuto Kidokoro ◽  
Yoichi Nakajima ◽  
...  

Abstract We performed melting experiments on Fe-O alloys up to 204 GPa and 3500 K in a diamond-anvil cell (DAC) and determined the liquidus phase relations in the Fe-FeO system based on textural and chemical characterizations of recovered samples. Liquid-liquid immiscibility was observed up to 29 GPa. Oxygen concentration in eutectic liquid increased from >8 wt% O at 44 GPa to 13 wt% at 204 GPa and is extrapolated to be about 15 wt% at the inner core boundary (ICB) conditions. These results support O-rich liquid core, although oxygen cannot be a single core light element. We estimated the range of possible liquid core compositions in Fe-O-Si-C-S and found that the upper bounds for silicon and carbon concentrations are constrained by the crystallization of dense inner core at the ICB.


2021 ◽  
Author(s):  
Wei-Jie Li ◽  
Zi Li ◽  
Chong-Jie Mo ◽  
Xian-Tu He ◽  
Cong Wang ◽  
...  

Abstract It is experimentally reported that the stratified layer atop Earth’s outer core is hundreds of kilometers thick with a maximum sound velocity reduction of 0.3% relative to the preliminary reference Earth model. However, why the sound velocity atop the outer core is reduced remains theoretically unclear. In this paper, the Ni and vital light O in the outer core were both considered to have implications for the stratification of Earth’s core, including the stratification thickness and the sound velocity profile. Ab initio molecular dynamics simulations were performed on the Fe-Ni-O fluid under the conditions of Earth’s outer core, and the self-diffusion coefficients and ion-ion dynamic structure factors were calculated. The self-diffusion coefficient of O is (19.56±0.83)×10-9 m2s-1 at the core-mantle boundary. Combining the diffusion equation with the time evolution of the O self-diffusion coefficient, the calculated stratification thickness at present is 194.7 km. The calculated ion-ion dynamic structural factors indicate that the sound velocity in the outmost outer core near the stratified layer is 7.86 km/s. These results show that Fe-Ni-O is a possible composition of the stratified layer atop the outer core featuring an appropriate thickness and a reduced sound velocity, thereby shedding light on the dynamic behavior of Earth’s core.


2019 ◽  
Vol 219 (Supplement_1) ◽  
pp. S21-S32 ◽  
Author(s):  
Christopher J Davies ◽  
Jon E Mound

SUMMARY Temperature anomalies in Earth’s liquid core reflect the vigour of convection and the nature and extent of thermal core–mantle coupling. Numerical simulations suggest that longitudinal temperature anomalies forced by lateral heat flow variations at the core–mantle boundary (CMB) can greatly exceed the anomalies that arise in homogeneous convection (i.e. with no boundary forcing) and may even penetrate all the way to the inner core boundary. However, it is not clear whether these simulations access the relevant regime for convection in Earth’s core, which is characterized by rapid rotation (low Ekman number E) and strong driving (high Rayleigh number Ra). We access this regime using numerical simulations of non-magnetic rotating convection with imposed heat flow variations at the outer boundary (OB) and investigate the amplitude and spatial pattern of thermal anomalies, focusing on the inner and outer boundaries. The 108 simulations cover the parameter range 10−4 ≤ E ≤ 10−6 and Ra = 1−800 times the critical value. At each Ra and E we consider two heat flow patterns—one derived from seismic tomography and the hemispheric $Y_1^1$ spherical harmonic pattern—with amplitudes measured by the parameter q⋆ = 2.3, 5 as well as the case of homogeneous convection. At the OB the forcing produces strong longitudinal temperature variations that peak in the equatorial region. Scaling relations suggest that the longitudinal variations are weakly dependent on E and Ra and are much stronger than in homogeneous convection, reaching O(1) K at core conditions if q⋆ ≈ 35. At the inner boundary, latitudinal and longitudinal temperature variations depend weakly on Ra and q⋆ and decrease strongly with E, becoming practically indistinguishable between homogeneous and heterogeneous cases at E = 10−6. Interpreted at core conditions our results suggest that heat flow variations on the CMB are unlikely to explain the large-scale variations observed by seismology at the top of the inner core.


Sign in / Sign up

Export Citation Format

Share Document