scholarly journals Fe5S2 identified as a host for sulfur in Earth’s core

2021 ◽  
Author(s):  
Claire Zurkowski ◽  
Barbara Lavina ◽  
Abigail Case ◽  
Kellie Swadba ◽  
Stella Chariton ◽  
...  

Planetary habitability, as we experience on Earth, is linked to a functioning geodynamo which is in part driven by the crystallization of the liquid iron-nickel-alloy core as a planet cools over time. Cosmochemical considerations suggest that sulfur is a candidate light alloying element in rocky planetary cores of varying sizes and oxidation states; such that, iron sulfide phase relations at extreme conditions contribute to outer core thermochemical convection and inner core crystallization in a wide range of planetary bodies. Here we experimentally investigate the structural properties of the Fe-S system and report the discovery of the sulfide, Fe5S2, crystallizing in equilibrium with iron at Earth’s outer core pressures and high temperatures. Using single-crystal X-ray diffraction techniques, Fe5S2 was determined to adopt the complex Ni5As2-type structure (P63cm, Z = 6). These results conclude that Fe5S2 is likely to crystallize at the interface of Earth’s core and mantle and will begin to crystallize during the freezing out of Earth and Venus’ core overtime. The increased metal-metal bonding measured in Fe5S2 compared to the other high P-T iron sulfides may contribute to signatures of higher conductivity from regions of Fe5S2 is crystallization. Fe5S2 could serve as a host for Ni and Si as has been observed in the related meteoritic phase, perryite, (Fe, Ni)8(P, Si)3, adding intricacies to elemental partitioning during inner core crystallization. The stability of Fe5S2 presented here is key to understanding the role of sulfur in the multicomponent crystallization sequences that drive the geodynamics and dictate the structures of Earth and rocky planetary cores.

2003 ◽  
Vol 67 (1) ◽  
pp. 113-123 ◽  
Author(s):  
D. Alfé ◽  
M. J. Gillan ◽  
G. D. Price

AbstractWe summarize the main ideas used to determine the thermodynamic properties of pure systems and binary alloys from first principles calculations. These are based on the ab initio calculations of free energies. As an application we present the study of iron and iron alloys under Earth,s core conditions. In particular, we report the whole melting curve of iron under these conditions, and we put constraints on the composition of the core. We found that iron melts at 6350士600 K at the pressure corresponding to the boundary between the solid inner core and the liquid outer core (ICB). We show that the core could not have been formed from a binary mixture of Fe with S, Si or O and we propose a ternary or quaternary mixture with 8—10% of S/Si in both liquid and solid and an additional ~8% of oxygen in the liquid. Based on this proposed composition we calculate the shift of melting temperature with respect to the melting temperature of pure Fe of ~—700 K, so that our best estimate for the temperature of the Earth's core at ICB is 5650±600 K.


1964 ◽  
Vol 54 (5A) ◽  
pp. 1299-1313 ◽  
Author(s):  
R. D. Adams ◽  
M. J. Randall

Abstract Detailed study of arrivals from accurately fixed earthquakes has revealed additional complexity in the travel-time curve for PKP. A notation is introduced in which observations are denoted by P′ with a two-letter suffix indicating the branch to which they belong, namely P′AB, P′IJ, P′GH and P′DF. A new velocity solution for the Earth's core has been derived from these observations. This velocity solution differs from those previously suggested in having three discontinuous increases in velocity between the outer and inner core, at levels corresponding to 0.570, 0.455 and 0.362 times the radius of the core. This implies two shells, each between 300 and 400 km thick, surrounding the inner core; in each shell there is a small negative velocity gradient. The outer discontinuity is sufficiently shallow to prevent rays in the outer core from forming a caustic.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Suraj K. Bajgain ◽  
Mainak Mookherjee ◽  
Rajdeep Dasgupta

AbstractEvaluating carbon’s candidacy as a light element in the Earth’s core is critical to constrain the budget and planet-scale distribution of this life-essential element. Here we use first principles molecular dynamics simulations to estimate the density and compressional wave velocity of liquid iron-carbon alloys with ~4-9 wt.% carbon at 0-360 gigapascals and 4000-7000 kelvin. We find that for an iron-carbon binary system, ~1-4 wt.% carbon can explain seismological compressional wave velocities. However, this is incompatible with the ~5-7 wt.% carbon that we find is required to explain the core’s density deficit. When we consider a ternary system including iron, carbon and another light element combined with additional constraints from iron meteorites and the density discontinuity at the inner-core boundary, we find that a carbon content of the outer core of 0.3-2.0 wt.%, is able to satisfy both properties. This could make the outer core the largest reservoir of terrestrial carbon.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 581
Author(s):  
Tetsuya Komabayashi

Recent updates on phase relations of Earth’s core-forming materials, Fe alloys, as a function of pressure (P), temperature (T), and composition (X) are reviewed for the Fe, Fe-Ni, Fe-O, Fe-Si, Fe-S, Fe-C, Fe-H, Fe-Ni-Si, and Fe-Si-O systems. Thermodynamic models for these systems are highlighted where available, starting with 1 bar to high-P-T conditions. For the Fe and binary systems, the longitudinal wave velocity and density of liquid alloys are discussed and compared with the seismological observations on Earth’s outer core. This review may serve as a guide for future research on the planetary cores.


2021 ◽  
Author(s):  
Felix Gerick ◽  
Dominique Jault ◽  
Jerome Noir

<p> Fast changes of Earth's magnetic field could be explained by inviscid and diffusion-less quasi-geostrophic (QG) Magneto-Coriolis modes. We present a hybrid QG model with columnar flows and three-dimensional magnetic fields and find modes with periods of a few years at parameters relevant to Earth's core. These fast Magneto-Coriolis modes show strong focusing of their kinetic and magnetic energy in the equatorial region, while maintaining a relatively large spatial structure along the azimuthal direction. Their properties agree with some of the observations and inferred core flows. We find additionally, in contrast to what has been assumed previously, that these modes are not affected significantly by magnetic diffusion. The model opens a new way of inverting geomagnetic observations to the flow and magnetic field deep within the Earth's outer core.</p>


1958 ◽  
Vol 48 (4) ◽  
pp. 301-314
Author(s):  
B. Gutenberg

Abstract More than 700 seismograms of 39 shocks recorded mainly in southern California at epicentral distances between 105 and 140 degrees are used to investigate records of phases which have penetrated the earth's core. Properties of PKIKP, SKP, SKIKP, PKS, and PKIKS are discussed. Portions of travel-time curves of these phases are revised. Travel times of waves starting and ending at the surface of the core, and wave velocities in the core, are recalculated. Between about 1,500 and 1,200 km. from the earth's center in the transition zone from the liquid outer to the probably solid inner core, waves having lengths of the order of 10 km. travel faster than longer waves. This is probably caused by a rather rapid increase in viscosity toward the earth's center in this transition zone.


2018 ◽  
Vol 46 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Q. Williams

The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.


2021 ◽  
Author(s):  
Wei-Jie Li ◽  
Zi Li ◽  
Chong-Jie Mo ◽  
Xian-Tu He ◽  
Cong Wang ◽  
...  

Abstract It is experimentally reported that the stratified layer atop Earth’s outer core is hundreds of kilometers thick with a maximum sound velocity reduction of 0.3% relative to the preliminary reference Earth model. However, why the sound velocity atop the outer core is reduced remains theoretically unclear. In this paper, the Ni and vital light O in the outer core were both considered to have implications for the stratification of Earth’s core, including the stratification thickness and the sound velocity profile. Ab initio molecular dynamics simulations were performed on the Fe-Ni-O fluid under the conditions of Earth’s outer core, and the self-diffusion coefficients and ion-ion dynamic structure factors were calculated. The self-diffusion coefficient of O is (19.56±0.83)×10-9 m2s-1 at the core-mantle boundary. Combining the diffusion equation with the time evolution of the O self-diffusion coefficient, the calculated stratification thickness at present is 194.7 km. The calculated ion-ion dynamic structural factors indicate that the sound velocity in the outmost outer core near the stratified layer is 7.86 km/s. These results show that Fe-Ni-O is a possible composition of the stratified layer atop the outer core featuring an appropriate thickness and a reduced sound velocity, thereby shedding light on the dynamic behavior of Earth’s core.


Sign in / Sign up

Export Citation Format

Share Document