scholarly journals Molecular damage in aging

Nature Aging ◽  
2021 ◽  
Author(s):  
Vadim N. Gladyshev ◽  
Stephen B. Kritchevsky ◽  
Steven G. Clarke ◽  
Ana Maria Cuervo ◽  
Oliver Fiehn ◽  
...  
Keyword(s):  
Soft Matter ◽  
2021 ◽  
Vol 17 (16) ◽  
pp. 4266-4274
Author(s):  
Xavier P. Morelle ◽  
Gabriel E. Sanoja ◽  
Sylvie Castagnet ◽  
Costantino Creton

Elastomers saturated with gas at high pressure suffer from cavity nucleation, inflation, and deflation upon rapid or explosive decompression.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lingyu Yang ◽  
Dehai Xian ◽  
Xia Xiong ◽  
Rui Lai ◽  
Jing Song ◽  
...  

Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerousin vitroandin vivostudies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.


2001 ◽  
Vol 20 (9) ◽  
pp. 439-451 ◽  
Author(s):  
A D Dayan ◽  
A J Paine

Laboratory and clinical reports about the pathogenesis of the carcinogenicity and allergenicity of chromium compounds published between 1985 and 2000 have been reviewed as a basis for consideration of the pathogenetic mechanisms involved. There is good evidence from the clinic and the laboratory that Cr[VI] is the ion responsible for most of the toxic actions, although much of the under lying molecular damage may be due to its intracellular reduction to the even more highly reactive and short-lived chemical species Cr[III] and Cr[V]. Exposure to Cr[VI] can result in various point mutations in DNA and to chromosomal damage, as well as to oxidative changes in proteins and to adduct formation. The relative importance of these effects of chromium ions and of the free oxidising radicals they may generate in the body in causing tumours and allergic sensitisation remain to be demonstrated. Biochemical studies of the DNA-damaging effects and of the pathogenesis of the allergic reactions to chromium ions have not kept up with advances in understanding of the molecular basis of the effects of other carcinogens and allergens.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 276
Author(s):  
Mariaelena D’Ambrosio ◽  
Cátia Gonçalves ◽  
Mariana Calmão ◽  
Maria Rodrigues ◽  
Pedro M. Costa

Marine biodiversity has been yielding promising novel bioproducts from venomous animals. Despite the auspices of conotoxins, which originated the paradigmatic painkiller Prialt, the biotechnological potential of gastropod venoms remains to be explored. Marine bioprospecting is expanding towards temperate species like the dogwhelk Nucella lapillus, which is suspected to secrete immobilizing agents through its salivary glands with a relaxing effect on the musculature of its preferential prey, Mytilus sp. This work focused on detecting, localizing, and testing the bioreactivity of cysteine-rich proteins and peptides, whose presence is a signature of animal venoms and poisons. The highest content of thiols was found in crude protein extracts from the digestive gland, which is associated with digestion, followed by the peribuccal mass, where the salivary glands are located. Conversely, the foot and siphon (which the gastropod uses for feeding) are not the main organs involved in toxin secretion. Ex vivo bioassays with Mytilus gill tissue disclosed the differential bioreactivity of crude protein extracts. Secretions from the digestive gland and peribuccal mass caused the most significant molecular damage, with evidence for the induction of apoptosis. These early findings indicate that salivary glands are a promising target for the extraction and characterization of bioactive cysteine-rich proteinaceous toxins from the species.


1973 ◽  
Vol 18 (2) ◽  
pp. 287-289 ◽  
Author(s):  
R E Johnson ◽  
E T Trevisani ◽  
J H Harberger

2005 ◽  
Vol 288 (2) ◽  
pp. C467-C474 ◽  
Author(s):  
S. Todd Lamitina ◽  
Kevin Strange

All cells adapt to hypertonic stress by regulating their volume after shrinkage, by accumulating organic osmolytes, and by activating mechanisms that protect against and repair hypertonicity-induced damage. In mammals and nematodes, inhibition of signaling from the DAF-2/IGF-1 insulin receptor activates the DAF-16/FOXO transcription factor, resulting in increased life span and resistance to some types of stress. We tested the hypothesis that inhibition of insulin signaling in Caenorhabditis elegans also increases hypertonic stress resistance. Genetic inhibition of DAF-2 or its downstream target, the AGE-1 phosphatidylinositol 3-kinase, confers striking resistance to a normally lethal hypertonic shock in a DAF-16-dependent manner. However, insulin signaling is not inhibited by or required for adaptation to hypertonic conditions. Microarray studies have identified 263 genes that are transcriptionally upregulated by DAF-16 activation. We identified 14 DAF-16-upregulated genes by RNA interference screening that are required for age- 1 hypertonic stress resistance. These genes encode heat shock proteins, proteins of unknown function, and trehalose synthesis enzymes. Trehalose levels were elevated approximately twofold in age- 1 mutants, but this increase was insufficient to prevent rapid hypertonic shrinkage. However, age- 1 animals unable to synthesize trehalose survive poorly under hypertonic conditions. We conclude that increased expression of proteins that protect eukaryotic cells against environmental stress and/or repair stress-induced molecular damage confers hypertonic stress resistance in C. elegans daf- 2/ age- 1 mutants. Elevated levels of solutes such as trehalose may also function in a cytoprotective manner. Our studies provide novel insights into stress resistance in animal cells and a foundation for new studies aimed at defining molecular mechanisms underlying these essential processes.


2021 ◽  
Vol 35 (1) ◽  
pp. 1613-1622
Author(s):  
Margarita Zhelyazkova ◽  
Nadya Hristova-Avakumova ◽  
Lozan Todorov ◽  
Georgi Momekov

Sign in / Sign up

Export Citation Format

Share Document