scholarly journals Differential effects of retroviral long terminal repeats on interleukin-3 gene expression and autocrine transformation

Leukemia ◽  
1997 ◽  
Vol 11 (10) ◽  
pp. 1711-1725 ◽  
Author(s):  
X-Y Wang ◽  
JA McCubrey
2017 ◽  
Vol 27 (8) ◽  
pp. 1384-1394 ◽  
Author(s):  
Vedran Franke ◽  
Sravya Ganesh ◽  
Rosa Karlic ◽  
Radek Malik ◽  
Josef Pasulka ◽  
...  

2016 ◽  
Author(s):  
Steven Xijin Ge

AbstractBackgroundInstead of testing predefined hypotheses, the goal of exploratory data analysis (EDA) is to find what data can tell us. Following this strategy, we re-analyzed a large body of genomic data to investigate how the early mouse embryos develop from fertilized eggs through a complex, poorly understood process.ResultsStarting with a single-cell RNA-seq dataset of 259 mouse embryonic cells from zygote to blastocyst stages, we reconstructed the temporal and spatial dynamics of gene expression. Our analyses revealed similarities in the expression patterns of regular genes and those of retrotransposons, and the enrichment of transposable elements in the promoters of corresponding genes. Long Terminal Repeats (LTRs) are associated with transient, strong induction of many nearby genes at the 2-4 cell stages, probably by providing binding sites for Obox and other homeobox factors. The presence of B1 and B2 SINEs (Short Interspersed Nuclear Elements) in promoters is highly correlated with broad upregulation of intracellular genes in a dosage-and distance-dependent manner. Such enhancer-like effects are also found for human Alu and bovine tRNA SINEs. Promoters for genes specifically expressed in embryonic stem cells (ESCs) are rich in B1 and B2 SINEs, but low in CpG islands.ConclusionsOur results provide evidence that transposable elements may play a significant role in establishing the expression landscape in early embryos and stem cells. This study also demonstrates that open-ended, exploratory analysis aimed at a broad understanding of a complex process can pinpoint specific mechanisms for further study.Major findingSingle-cell RNA-seq data enables estimation of retrotransposon expression during PDSimilar expression dynamics of retrotransposons and regular genes during PDLong terminal repeats may be essential for the 1st wave of gene expressionObox homeobox factors are possible regulators of PD, upstream of Zscan4SINE repeats predict expression of nearby genes in murine, human and bovine embryosExploratory analysis of large single-cell data pinpoints developmental pathways


Circulation ◽  
2000 ◽  
Vol 102 (15) ◽  
pp. 1828-1833 ◽  
Author(s):  
Georg Nickenig ◽  
Kerstin Strehlow ◽  
Sven Wassmann ◽  
Anselm T. Bäumer ◽  
Katja Albory ◽  
...  

1987 ◽  
Vol 262 (27) ◽  
pp. 13348-13351
Author(s):  
M J Czaja ◽  
F R Weiner ◽  
M Eghbali ◽  
M A Giambrone ◽  
M Eghbali ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Donguk Kim ◽  
Na Yeon Park ◽  
Keunsoo Kang ◽  
Stuart K. Calderwood ◽  
Dong-Hyung Cho ◽  
...  

AbstractArsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.


Virology ◽  
2001 ◽  
Vol 283 (2) ◽  
pp. 262-272 ◽  
Author(s):  
Corinna Baust ◽  
Wolfgang Seifarth ◽  
Ulrike Schön ◽  
Rüdiger Hehlmann ◽  
Christine Leib-Mösch

Sign in / Sign up

Export Citation Format

Share Document