scholarly journals A novel potential effector of M-Ras and p21 Ras negatively regulates p21 Ras-mediated gene induction and cell growth

Oncogene ◽  
2001 ◽  
Vol 20 (2) ◽  
pp. 188-197 ◽  
Author(s):  
Götz RA Ehrhardt ◽  
Christian Korherr ◽  
James S Wieler ◽  
Michèle Knaus ◽  
John W Schrader
Keyword(s):  
1996 ◽  
Vol 16 (11) ◽  
pp. 6582-6592 ◽  
Author(s):  
C Y Chen ◽  
L W Forman ◽  
D V Faller

The induction of immediate-early (IE) response genes, such as egr-1, c-fos, and c-jun, occurs rapidly after the activation of T lymphocytes. The process of activation involves calcium mobilization, activation of protein kinase C (PKC), and phosphorylation of tyrosine kinases. p21(ras), a guanine nucleotide binding factor, mediates T-cell signal transduction through PKC-dependent and PKC-independent pathways. The involvement of p21(ras) in the regulation of calcium-dependent signals has been suggested through analysis of its role in the activation of NF-AT. We have investigated the inductions of the IE genes in response to calcium signals in Jurkat cells (in the presence of activated p21(ras)) and their correlated consequences. The expression of activated p21(ras) negatively regulated the induction of IE genes by calcium ionophore. This inhibition of calcium-activated IE gene induction was reversed by treatment with cyclosporin A, suggesting the involvement of calcineurin in this regulation. A later result of inhibition of this activation pathway by p21(ras) was down-regulation of the activity of the transcription factor AP-1 and subsequent coordinate reductions in IL-2 gene expression and protein production. These results suggest that p2l(ras) is an essential mediator in generating not only positive but also negative modulatory mechanisms controlling the competence of T cells in response to inductive stimulations.


2017 ◽  
Vol 37 (7) ◽  
pp. 873-883 ◽  
Author(s):  
Simone A. M. Badal ◽  
Malyn M. Asuncion Valenzuela ◽  
Dain Zylstra ◽  
George Huang ◽  
Pallavi Vendantam ◽  
...  

Author(s):  
V. F. Allison ◽  
G. C. Fink ◽  
G. W. Cearley

It is well known that epithelial hyperplasia (benign hypertrophy) is common in the aging prostate of dogs and man. In contrast, little evidence is available for abnormal epithelial cell growth in seminal vesicles of aging animals. Recently, enlarged seminal vesicles were reported in senescent mice, however, that enlargement resulted from increased storage of secretion in the lumen and occurred concomitant to epithelial hypoplasia in that species.The present study is concerned with electron microscopic observations of changes occurring in the pseudostratified epithelium of the seminal vescles of aging rats. Special attention is given to certain non-epithelial cells which have entered the epithelial layer.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


Sign in / Sign up

Export Citation Format

Share Document