scholarly journals Penguin tissue as a proxy for relative krill abundance in East Antarctica during the Holocene

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Tao Huang ◽  
Liguang Sun ◽  
Nanye Long ◽  
Yuhong Wang ◽  
Wen Huang
The Holocene ◽  
2004 ◽  
Vol 14 (2) ◽  
pp. 246-257 ◽  
Author(s):  
Elie Verleyen ◽  
Dominic A. Hodgson ◽  
Koen Sabbe ◽  
Koenraad Vanhoutte ◽  
Wim Vyverman

2008 ◽  
Vol 21 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Tao Huang ◽  
Liguang Sun ◽  
Yuhong Wang ◽  
Renbin Zhu

AbstractDuring CHINARE-22 (December 2005–March 2006), we investigated six penguin colonies in the Vestfold Hills, East Antarctica, and collected several penguin ornithogenic sediment cores, samples of fresh guano and modern penguin bone and feather. We selected seven penguin bones and feathers and six sediments from the longest sediment core and performed AMS14C dating. The results indicate that penguins occupied the Vestfold Hills as early as 8500 calibrated years before present (cal. yrbp), following local deglaciation and the formation of the ice free area. This is the first report on the Holocene history of penguins in the Vestfold Hills. As in other areas of Antarctica, penguins occupied this area as soon as local ice retreated and the ice free area formed, and they are very sensitive to climatic and environmental changes. This work provides the foundation for understanding the history of penguins occupation in Vestfold Hills, East Antarctica.


2010 ◽  
Vol 29 (27-28) ◽  
pp. 3709-3719 ◽  
Author(s):  
Delphine Denis ◽  
Xavier Crosta ◽  
Loic Barbara ◽  
Guillaume Massé ◽  
Hans Renssen ◽  
...  

2002 ◽  
Vol 14 (4) ◽  
pp. 385-394 ◽  
Author(s):  
HELEN KIRKUP ◽  
MARTIN MELLES ◽  
DAMIAN B. GORE

Analyses on a sediment core collected from the Windmill Islands, East Antarctica are used to demonstrate that climatic conditions in this region prior to the Last Glacial Maximum were similar to those during the Holocene and that the area was overrun by ice at some stage between 26 kyr BP and the onset of biogenic sedimentation 11 kyr BP. The 10.9 m long core was taken from a marine inlet (epishelf lake) on Peterson Island and is predominantly a sapropel of Holocene age. Material in the lower part of the core includes a till layer lain down during the last glacial in the region and below this till is material which has been dated to 26 kyr BP. Geochemical analyses conducted on the core demonstrate similarities between the Holocene sequence and the preglacial material. The Holocene sequence shows enhanced biogenic production and periods of open water around 4 kyr BP, suggesting a climatic optimum around that time. A subsequent decline in conditions, probably a colder climate with greater extent of sea ice, is evident from 1 kyr BP to the present. The data support results from ice core studies on nearby Law Dome, which suggest there was a period of warming around 11.5 to 9 kyr BP, that recent summer temperatures are low relative to a few centuries ago, and that increasing winter temperatures are the main contributing factor to a recent overall warming in the region.


2002 ◽  
Vol 35 ◽  
pp. 306-312 ◽  
Author(s):  
Barbara Delmonte ◽  
Jean Robert Petit ◽  
Valter Maggi

AbstractMeasurements of the concentration and size distribution of dust particles found in the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core, East Antarctica, provide records covering the last 27000 years. the total concentration decreased drastically by a factor of 55 from the Last Glacial Maximum (LGM) (800 ppb) to the Holocene (15 ppb), with a well-marked absolute minimum around 11500–11600 years ago. This latter almost corresponds to the end of the Younger Dryas in Greenland, which was marked by a methane peak related to the expansion of tropical wetlands. Assuming that the source region forAntarctic dust is the southern part of South America, the Antarctic dust minimum suggests a larger geographical extent for this wet period. the volume (mass)-size distribution of the particles displays a mode which is close to 2 μm in diameter, shifting from 1.9 μm in the glacial period to 2.07 μm in the Holocene. As opposed to previous results from old Dome C, EPICA suggests a greater proportion of large particles in Holocene samples than in LGM samples. In addition, for the period 13 000–2000BP, structured millennial-scale oscillations of the dust mode appear. These are especially well marked before 5000 years ago, with higher frequencies also present. the difference between LGM and Holocene particle distributions may be related to changes in the pattern of dust transport to East Antarctica. At Dome C the greater proportion of coarse particles observed during the Holocene suggests greater direct meridional transport. During the LGM, atmospheric circulation was likely more zonal, causing a greater amount of large dust particles to be removed from the atmosphere before reaching Antarctica. Changes in atmospheric circulation could also be the cause of the millennial-scale dust-mode oscillations during the Holocene.


1998 ◽  
Vol 27 ◽  
pp. 268-274 ◽  
Author(s):  
P. N. Sedwick ◽  
P.T. Harris ◽  
L. G. Robertson ◽  
G. M. Mcmurtry ◽  
M. D. Cremer ◽  
...  

Sediments from the Antarctic continental margin may provide detailed palaeoenvironmental records for Antarctic shelf waters during the late Quaternary. Here we present results from a palaeoenvironmental study of two sediment cores recovered from the continental shelf off Mac. Robertson Land, East Antarctica. These gravity cores were collected approximately 90 km apart from locations on the inner and outer shelf. Both cores are apparently undisturbed sequences of diatom ooze mixed with fine, quartz-rich sand. Core stratigraphies have been established from radiocarbon analyses of bulk organic carbon. Down-core geochemical determinations include the lithogenic components AÍ and Fe, biogenic components opal and organic carbon, and palaco-redox proxies Mn, Mo and U. We use the geochemical data to infer past variations in the deposition of biogenic and lithogenic materials, and the radiocarbon dates to estimate average sediment accumulation rates. The Holocene record of the outer-shelf core suggests three episodes of enhanced diatom export production at about 1.8, 3.8 and 5.5 ka BP, as well as less pronounced bloom episodes which occurred over a shorter period. Average sediment accumulation rates at this location range from 13.7 cm ka−1 in the late Pleistocene early Holocene to 82 cm ka−1 in the late Holocene, and suggest that the inferred episodes of enhanced biogenic production lasted 100-1000 years. in contrast, data for the inner-shelf core suggest that there has been a roughly constant proportion of biogenic and lithogenic material accumulating during the middle to late Holocene, with a greater proportion of biogenic material relative to the outer shelf. Notably, there is an approximately 7-fold increase in average sediment accumulation rate (from 24.5 to 179 cm ka−1) at this inner-shelf location between the middle and late Holocene, with roughly comparable increases in the mass accumulation rates of both biogenic and lithogenic material. This may represent changes in sediment transport processes, or reflect real increases in pelagic sedimentation in this region during the Holocene. Our results suggest quite different sedimentation regimes in these two shelf locations during the middle to late Holocene.


2010 ◽  
Vol 74 (1) ◽  
pp. 23-25 ◽  
Author(s):  
Sonja Berg ◽  
Bernd Wagner ◽  
Duanne A. White ◽  
Martin Melles

AbstractThe history of glacial advances and retreats of the East Antarctic ice sheet during the Holocene is not well-known, due to limited field evidence in both the marine and terrestrial realm. A 257-cm-long sediment core was recovered from a marine inlet in the Rauer Group, East Antarctica, 1.8 km in front of the present ice-sheet margin. Radiocarbon dating and lithological characteristics reveal that the core comprises a complete marine record since 4500 yr. A significant ice-sheet expansion beyond present ice margins therefore did not occur during this period.


1990 ◽  
Vol 14 ◽  
pp. 354-354
Author(s):  
J.R Petit ◽  
N.I. Barkov ◽  
J.P. Benoist ◽  
J. Jouzel ◽  
Y.S. Korotkevich ◽  
...  

The climate of the Holocene is, for continental regions from middle and low latitudes, relatively well documented from pollen studies and other sources. To obtain a global picture, these data must be supplemented by climatic series from polar regions. Such information may be extracted from δD or δ18O ice-core profiles but the interpretation of these isotopic records suffers some limitations, (1) because, expected temperature changes being small, they can be obscured by noise effects in the isotope-temperature relationship, and (2) because they can be influenced, especially in coastal regions, by changes in origin of the ice.With this in mind, we focus our presentation on Dome C and Vostok cores drilled on the East Antarctica Plateau and essentially undisturbed by ice-flow conditions. The detailed comparison between these continuous isotopic records makes it possible to know which part of the isotopic signal is climatically significant. Spectral properties of these two records are also examined over the Holocene period. In addition, we present isotopic results obtained on a 950 m ice core drilled at Komsomolskaia (also on the East Antarctica Plateau) by the Soviet Antarctic Expedition. This core fully covers the Holocene and, although discontinuous, the new data help us to document the East Antarctica isotopic record.From these data, an average climatic record is constructed which shows that the East Antarctica climate was fairly stable during the Holocene, marginally warmest around 10 kyear B.P. and coldest in periods around 1.5 and 6 kyear B P. These features are discussed in relation with other Antarctic data (Byrd, Law Dome, Ross Ice Shelf) and with climate records from both southern and northern hemispheres


Sign in / Sign up

Export Citation Format

Share Document