scholarly journals Epigenetic memory gained by priming with osteogenic induction medium improves osteogenesis and other properties of mesenchymal stem cells

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Yunfeng Rui ◽  
Liangliang Xu ◽  
Rui Chen ◽  
Ting Zhang ◽  
Sien Lin ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
pp. 176-181
Author(s):  
Long Ling ◽  
Hailan Hu ◽  
Ram Ishwar Yadav ◽  
Jianliang Gao ◽  
Xiao Wei ◽  
...  

miR-218 is associated with osteogenesis. Bioinformatics analysis showed a targeting relationship between miR-218 and GSK-3β 3′-UTR. Our study assessed whether miR-218 regulates GSK-3β expression and affects osteoblast differentiation of bone marrow mesenchymal stem cells (BMSCs). Osteogenic induction medium was used to induce BMSCs to differentiate into osteoblasts. miR-218, GSK-3β, β-catenin and RUNX2 level was detected during D10 and D20 differentiation. BMSCs cells were divided into antagomir-NC and antagomir-218, and induced to differentiate for 20 days followed by analysis of GSK-3β, β-catenin and RUNX2 level, osteogenesis and cell differentiation by the alizarin red staining. Compared with pre-differentiation,the expression of miR-218, β-catenin and RUNX2 was gradually increased and GSK-3β expression was decreased during the differentiation of BMSCs into osteoblasts. There was a targeted regulation relationship between miR-218 and GSK-3β. Compared with the antagomir-NC group, GSK-3β protein expression was increased in antagomir-218 transfection group, with decreased the expression of β-catenin and RUNX2 protein, reduced ALP activity as well as weakened staining degree of alizarin red. GSK-3β expression is decreased and miR-218 expression is increased during osteoblast differentiation of BMSCs. Inhibition of miR-218 expression can up-regulate GSK-3β expression and attenuate the ability of BMSCs to differentiate into osteoblasts.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 759
Author(s):  
Xiaolan Huang ◽  
Rongmei Qu ◽  
Yan Peng ◽  
Yuchao Yang ◽  
Tingyu Fan ◽  
...  

Human skin fibroblasts (HSFs) approximate the multidirectional differentiation potential of mesenchymal stem cells, so they are often used in differentiation, cell cultures, and injury repair. They are an important seed source in the field of bone tissue engineering. However, there are a few studies describing the mechanism of osteogenic differentiation of HSFs. Here, osteogenic induction medium was used to induce fibroblasts to differentiate into osteoblasts, and the role of the mechanical sensitive element PDLIM5 in microfilament-mediated osteogenic differentiation of human fibroblasts was evaluated. The depolymerization of microfilaments inhibited the expression of osteogenesis-related proteins and alkaline phosphatase activity of HSFs, while the polymerization of microfilaments enhanced the osteogenic differentiation of HSFs. The evaluation of potential protein molecules affecting changes in microfilaments showed that during the osteogenic differentiation of HSFs, the expression of PDLIM5 increased with increasing induction time, and decreased under the state of microfilament depolymerization. Lentivirus-mediated PDLIM5 knockdown by shRNA weakened the osteogenic differentiation ability of HSFs and inhibited the expression and morphological changes of microfilament protein. The inhibitory effect of knocking down PDLIM5 on HSF osteogenic differentiation was reversed by a microfilament stabilizer. Taken together, these data suggest that PDLIM5 can mediate the osteogenic differentiation of fibroblasts by affecting the formation and polymerization of microfilaments.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Emil Østergaard Nielsen ◽  
Li Chen ◽  
Jonas Overgaard Hansen ◽  
Matilda Degn ◽  
Søren Overgaard ◽  
...  

Although adipose-derived stromal cells (ADSCs) have been a major focus as an alternative to autologous bone graft in orthopedic surgery, bone formation potential of ADSCs is not well known and cytokines as osteogenic inducers on ADSCs are being investigated. This study aimed at isolating ADSCs from ovine adipose tissue (AT) and optimizing osteogenic differentiation of ovine ADSCs (oADSC) by culture medium and growth factors. Four AT samples were harvested from two female ovine (Texel/Gotland breed), and oADSCs were isolated and analyzed by flow cytometry for surface markers CD29, CD44, CD31, and CD45. Osteogenic differentiation was made in vitro by seeding oADSCs in osteogenic induction medium (OIM) containing fibroblast growth factor basic (FGFb), bone morphogenetic protein 2 (BMP2), or NEL-like molecule 1 (NELL1) in 4 different dosages (1, 10, 50, and 100 ng/ml, respectively). Basic medium (DMEM) was used as control. Analysis was made after 14 days by Alizarin red staining (ARS) and quantification. This study successfully harvested AT from ovine and verified isolated cells for minimal criteria for adipose stromal cells which suggests a feasible method for isolation of oADSCs. OIM showed significantly higher ARS to basic medium, and FGFb 10 ng/ml revealed significantly higher ARS to OIM alone after 14 days.


Author(s):  
Lan Zhang ◽  
Yan Liu ◽  
Bo Feng ◽  
Li-Gong Liu ◽  
Ying-Cai Zhou ◽  
...  

This study aimed to certify the hypothesis that miR-138-5p is expected to reduced osteodifferentiation of human bone mesenchymal stem cells (hBMSCs) by FOXC1 down-regulation. hBMSCs were separated from bone marrow and osteogenic induction medium was added to stimulate osteogenic differentiation. Flow cytometric analysis was applied to evaluate the expression of cell surface antigens associated with hBMSCs, including CD29, CD44, CD90, CD45 and CD34. qRT-PCR assay and western blot assay were determined to measure the mRNA and protein expression of miR-138-5p, OCN, RUNX2, BSP, ALP and FOXC1. Alkaline phosphatase (ALP) staining assay and Alizarin Red Staining (ARS) assay were determined to validate the osteogenic differentiation. Luciferase assay was applied to test the interaction of miR-138-5p and FOXC1. We demonstrated miR-138-5p is downregulated in osteogenic differentiated hBMSCs. Besides, miR-138-5p overexpression diminished osteodifferentiated markers expression, ALP activity and ARS activity. Furthermore, we revealed that forkhead transcription factor C1 (FOXC1) was a downstream target gene of miR-138-5p and knockdown of miR-138-5p improved the osteogenesis differentiation of hBMSCs by upregulating FOXC1. miR-138-5p knockdown promoted osteogenic differentiation in hBMSCs via directly targeting FOXC1. This study suggested miR-138-5p may be a new target for hBMSCs osteogenic differentiation and the treatment of bone defects.


2020 ◽  
Vol 21 (2) ◽  
pp. 581 ◽  
Author(s):  
Phoonsuk Limraksasin ◽  
Takeru Kondo ◽  
Maolin Zhang ◽  
Hiroko Okawa ◽  
Thanaphum Osathanon ◽  
...  

Cell condensation and mechanical stimuli play roles in osteogenesis and chondrogenesis; thus, they are promising for facilitating self-organizing bone/cartilage tissue formation in vitro from induced pluripotent stem cells (iPSCs). Here, single mouse iPSCs were first seeded in micro-space culture plates to form 3-dimensional spheres. At day 12, iPSC spheres were subjected to shaking culture and maintained in osteogenic induction medium for 31 days (Os induction). In another condition, the osteogenic induction medium was replaced by chondrogenic induction medium at day 22 and maintained for a further 21 days (Os-Chon induction). Os induction produced robust mineralization and some cartilage-like tissue, which promoted expression of osteogenic and chondrogenic marker genes. In contrast, Os-Chon induction resulted in partial mineralization and a large area of cartilage tissue, with greatly increased expression of chondrogenic marker genes along with osterix and collagen 1a1. Os-Chon induction enhanced mesodermal lineage commitment with brachyury expression followed by high expression of lateral plate and paraxial mesoderm marker genes. These results suggest that combined use of micro-space culture and mechanical stimuli facilitates hybrid bone/cartilage tissue formation from iPSCs, and that the bone/cartilage tissue ratio in iPSC constructs could be manipulated through the induction protocol.


2016 ◽  
Vol 6 (2) ◽  
pp. 193-207
Author(s):  
Adil Shahzad Ahmed ◽  
Joseph Chavarria ◽  
Tyler Brenneman ◽  
Kurt Johnson ◽  
Erik Antonsen ◽  
...  

2017 ◽  
Vol 5 (13) ◽  
pp. 2468-2482 ◽  
Author(s):  
Wei Wei ◽  
Jipeng Li ◽  
Shuo Chen ◽  
Mingjiao Chen ◽  
Qing Xie ◽  
...  

Tissue engineering technology that adopts mesenchymal stem cells combined with scaffolds presents a promising strategy for tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document