fibroblast growth factor basic
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 0)

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1250
Author(s):  
Milena Restan Perez ◽  
Ruchi Sharma ◽  
Nadia Zeina Masri ◽  
Stephanie Michelle Willerth

Current treatments for neurodegenerative diseases aim to alleviate the symptoms experienced by patients; however, these treatments do not cure the disease nor prevent further degeneration. Improvements in current disease-modeling and drug-development practices could accelerate effective treatments for neurological diseases. To that end, 3D bioprinting has gained significant attention for engineering tissues in a rapid and reproducible fashion. Additionally, using patient-derived stem cells, which can be reprogrammed to neural-like cells, could generate personalized neural tissues. Here, adipose tissue-derived mesenchymal stem cells (MSCs) were bioprinted using a fibrin-based bioink and the microfluidic RX1 bioprinter. These tissues were cultured for 12 days in the presence of SB431542 (SB), LDN-193189 (LDN), purmorphamine (puro), fibroblast growth factor 8 (FGF8), fibroblast growth factor-basic (bFGF), and brain-derived neurotrophic factor (BDNF) to induce differentiation to dopaminergic neurons (DN). The constructs were analyzed for expression of neural markers, dopamine release, and electrophysiological activity. The cells expressed DN-specific and early neuronal markers (tyrosine hydroxylase (TH) and class III beta-tubulin (TUJ1), respectively) after 12 days of differentiation. Additionally, the tissues exhibited immature electrical signaling after treatment with potassium chloride (KCl). Overall, this work shows the potential of bioprinting engineered neural tissues from patient-derived MSCs, which could serve as an important tool for personalized disease models and drug-screening.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lusha Zhang ◽  
Lu Chen ◽  
Chunxiao Li ◽  
Hong Shi ◽  
Qianyi Wang ◽  
...  

Oroxylin A (OA) has been shown to simultaneously increase coronary flow and provide a strong anti-inflammatory effect. In this study, we described the angiogenic properties of OA. OA treatment accelerated perfusion recovery, reduced tissue injury, and promoted angiogenesis after hindlimb ischemia (HLI). In addition, OA regulated the secretion of multiple cytokines, including vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANG-2), fibroblast growth factor-basic (FGF-2), and platelet derived growth factor BB (PDGF-BB). Specifically, those multiple cytokines were involved in cell migration, cell population proliferation, and angiogenesis. These effects were observed at 3, 7, and 14 days after HLI. In skeletal muscle cells, OA promoted the release of VEGFA and ANG-2. After OA treatment, the conditioned medium derived from skeletal muscle cells was found to significantly induce endothelial cell (EC) proliferation. OA also induced EC migration by activating the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinase 2 (ROCK-II) signaling pathway and the T-box20 (TBX20)/prokineticin 2 (PROK2) signaling pathway. In addition, OA was able to downregulate the number of macrophages and neutrophils, along with the secretion of interleukin-1β, at 3 days after HLI. These results expanded current knowledge about the beneficial effects of OA in angiogenesis and blood flow recovery. This research could open new directions for the development of novel therapeutic intervention for patients with peripheral artery disease (PAD).


Author(s):  
Clare Josephine Tollan ◽  
Niall G. MacFarlane ◽  
Iain R. MacKay

Abstract Background ‘Choke vessels’ are thought to dilate in the first 72 h when blood flow to an area is disrupted. This study used ‘high cut-off’ microdialysis catheters in clinical research to investigate factors mediating circulatory change within free flaps. Methods Six patients undergoing DIEP flap breast reconstruction each had three ‘high cut-off’ microdialysis catheters, with a membrane modification allowing molecules as large as 100 kDa to pass, inserted into Hartrampf zones 1, 2 and 4 to assess multiple vascular territories. Microdialysis continued for 72 h post-operatively. Samples were analysed for interleukin-6 (IL-6), tumour necrosis factor alpha (TNFα) and fibroblast growth factor basic (FGFβ). Results Three hundred and twenty-four samples were analysed for IL-6, FGFβ and TNFα totalling 915 analyses. IL-6 showed an increasing trend until 36 h post-operatively before remaining relatively constant. Overall, there was an increase (p < 0.001) over the time period from 4 to 72 h, fitting a linear trend. TNFα had a peak around 20–24 h before a gradual decrease. There was a significant linear time trend (p = 0.029) between 4 and 76 h, decreasing over the time period. FGFβ concentrations did not appear to have any overall difference in concentration with time. The concentration however appeared to oscillate about a horizontal trend line. There were no differences between the DIEP zones in concentrations of cytokines collected. Conclusion This study uses high-cut off microdialysis catheters to evaluate changes in cytokines, and requires further research to be undertaken to add to our knowledge of choke vessels and flap physiology. Level of evidence: Level IV, diagnostic study.


2019 ◽  
Author(s):  
Shenchao Guo ◽  
Houfa Yin ◽  
Mingjie Zheng ◽  
Yizhen Tang ◽  
Bing Lu ◽  
...  

Abstract Background: The exact pathogenesis of idiopathic choroidal neovascularization (ICNV) remains unclear. Cytokine-mediated inflammation has been thought to be involved in the pathophysiology of ICNV. The purpose of this study was to investigate serum cytokine profiles in patients with ICNV and to explore the relationship between serum cytokine levels and ICNV severity. Methods: This case-control study was conducted in 32 ICNV patients and 30 healthy volunteers. Clinical and demographic information was obtained from the medical data platform and the serum was analysed with a multiplex assay to determine the levels of seven cytokines: interleukin (IL)-2, IL-10, IL-15, IL-17, basic fibroblast growth factor (basic FGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). Results: Serum levels of IL-2, IL-10, IL-17, basic FGF, and VEGF were elevated in ICNV patients compared to controls. Serum GM-CSF levels were positively related to central retinal thickness, and serum IL-17 levels were positively related to CNV lesion area. Conclusion: Serum inflammatory cytokines were significantly elevated in ICNV patients compared to controls. This suggests that systemic inflammation may play a critical role in the physiopathology of ICNV.


2019 ◽  
Author(s):  
Shenchao Guo ◽  
Houfa Yin ◽  
Mingjie Zheng ◽  
Yizhen Tang ◽  
Bing Lu ◽  
...  

Abstract Background: The exact pathogenesis of idiopathic choroidal neovascularization (ICNV) remains unclear. Cytokine-mediated inflammation has been thought to be involved in the pathophysiology of ICNV. The purpose of this study was to investigate serum cytokine profiles in patients with ICNV and to explore the relationship between serum cytokine levels and ICNV severity. Methods: This case-control study was conducted in 32 ICNV patients and 30 healthy volunteers. Clinical and demographic information was obtained from the medical data platform and the serum was analysed with a multiplex assay to determine the levels of seven cytokines: interleukin (IL)-2, IL-10, IL-15, IL-17, basic fibroblast growth factor (basic FGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). Results: Serum levels of IL-2, IL-10, IL-17, basic FGF, and VEGF were elevated in ICNV patients compared to controls. Serum GM-CSF levels were positively related to central retinal thickness, and serum IL-17 levels were positively related to CNV lesion area. Conclusion: Serum inflammatory cytokines were significantly elevated in ICNV patients compared to controls. This suggests that systemic inflammation may play a critical role in the physiopathology of ICNV.


2019 ◽  
Author(s):  
Shenchao Guo ◽  
Houfa Yin ◽  
Mingjie Zheng ◽  
Yizhen Tang ◽  
Bing Lu ◽  
...  

Abstract Background To investigate serum cytokine profiles in patients with idiopathic choroidal neovascularization (ICNV) and explore the relationship between serum cytokine levels and ICNV severity. Methods This case-control study was conducted in 32 ICNV patients and 30 healthy volunteers. Clinical and demographic information was obtained from the medical data platform and the serum was analysed with a multiplex assay to determine the levels of seven cytokines: interleukin (IL)-2, IL-10, IL-15, IL-17, basic fibroblast growth factor (basic FGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). Results Serum levels of IL-2, IL-10, IL-17, basic FGF, and VEGF were elevated in ICNV patients compared to controls. Serum GM-CSF levels were positively related to central retinal thickness, and serum IL-17 levels were positively related to CNV lesion area. Conclusion Serum inflammatory cytokines were significantly elevated in ICNV patients compared to controls. This suggests that systemic inflammation may play a critical role in the physiopathology of ICNV.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Emil Østergaard Nielsen ◽  
Li Chen ◽  
Jonas Overgaard Hansen ◽  
Matilda Degn ◽  
Søren Overgaard ◽  
...  

Although adipose-derived stromal cells (ADSCs) have been a major focus as an alternative to autologous bone graft in orthopedic surgery, bone formation potential of ADSCs is not well known and cytokines as osteogenic inducers on ADSCs are being investigated. This study aimed at isolating ADSCs from ovine adipose tissue (AT) and optimizing osteogenic differentiation of ovine ADSCs (oADSC) by culture medium and growth factors. Four AT samples were harvested from two female ovine (Texel/Gotland breed), and oADSCs were isolated and analyzed by flow cytometry for surface markers CD29, CD44, CD31, and CD45. Osteogenic differentiation was made in vitro by seeding oADSCs in osteogenic induction medium (OIM) containing fibroblast growth factor basic (FGFb), bone morphogenetic protein 2 (BMP2), or NEL-like molecule 1 (NELL1) in 4 different dosages (1, 10, 50, and 100 ng/ml, respectively). Basic medium (DMEM) was used as control. Analysis was made after 14 days by Alizarin red staining (ARS) and quantification. This study successfully harvested AT from ovine and verified isolated cells for minimal criteria for adipose stromal cells which suggests a feasible method for isolation of oADSCs. OIM showed significantly higher ARS to basic medium, and FGFb 10 ng/ml revealed significantly higher ARS to OIM alone after 14 days.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Nishat Tasnim ◽  
Vikram Thakur ◽  
Munmun Chattopadhyay ◽  
Binata Joddar

The implantation of stem cells in vivo is the ideal approach for the restoration of normal life functions, such as replenishing the decreasing levels of affected dopaminergic (DA) neurons during neurodegenerative disease conditions. However, combining stem cells with biomaterial scaffolds provides a promising strategy for engineering tissues or cellular delivery for directed stem cell differentiation as a means of replacing diseased/damaged tissues. In this study, mouse mesenchymal stem cells (MSCs) were differentiated into DA neurons using sonic hedgehog, fibroblast growth factor, basic fibroblast growth factor, and brain-derived neurotrophic factor, while they were cultured within collagen-coated 3D graphene foams (GF). The differentiation into DA neurons within the collagen-coated GF and controls (collagen gels, plastic) was confirmed using β-III tubulin, tyrosine hydroxylase (TH), and NeuN positive immunostaining. Enhanced expression of β-III tubulin, TH, and NeuN and an increase in the average neurite extension length were observed when cells were differentiated within collagen-coated GF in comparison with collagen gels. Furthermore, these graphene-based scaffolds were not cytotoxic as MSC seemed to retain viability and proliferated substantially during in vitro culture. In summary, these results suggest the utility of 3D graphene foams towards the differentiation of DA neurons from MSC, which is an important step for neural tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document