miR-218 Regulates Glycogen Synthase Kinase-3β and Promotes Differentiation of Human Bone Marrow Mesenchymal Stem Cells into Osteoblasts

2020 ◽  
Vol 10 (2) ◽  
pp. 176-181
Author(s):  
Long Ling ◽  
Hailan Hu ◽  
Ram Ishwar Yadav ◽  
Jianliang Gao ◽  
Xiao Wei ◽  
...  

miR-218 is associated with osteogenesis. Bioinformatics analysis showed a targeting relationship between miR-218 and GSK-3β 3′-UTR. Our study assessed whether miR-218 regulates GSK-3β expression and affects osteoblast differentiation of bone marrow mesenchymal stem cells (BMSCs). Osteogenic induction medium was used to induce BMSCs to differentiate into osteoblasts. miR-218, GSK-3β, β-catenin and RUNX2 level was detected during D10 and D20 differentiation. BMSCs cells were divided into antagomir-NC and antagomir-218, and induced to differentiate for 20 days followed by analysis of GSK-3β, β-catenin and RUNX2 level, osteogenesis and cell differentiation by the alizarin red staining. Compared with pre-differentiation,the expression of miR-218, β-catenin and RUNX2 was gradually increased and GSK-3β expression was decreased during the differentiation of BMSCs into osteoblasts. There was a targeted regulation relationship between miR-218 and GSK-3β. Compared with the antagomir-NC group, GSK-3β protein expression was increased in antagomir-218 transfection group, with decreased the expression of β-catenin and RUNX2 protein, reduced ALP activity as well as weakened staining degree of alizarin red. GSK-3β expression is decreased and miR-218 expression is increased during osteoblast differentiation of BMSCs. Inhibition of miR-218 expression can up-regulate GSK-3β expression and attenuate the ability of BMSCs to differentiate into osteoblasts.

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Ying Chen ◽  
Yu-Run Yang ◽  
Xiao-Liang Fan ◽  
Peng Lin ◽  
Huan Yang ◽  
...  

AbstractOsteoblast-mediated bone formation is a complex process involving various pathways and regulatory factors, including cytokines, growth factors, and hormones. Investigating the regulatory mechanisms behind osteoblast differentiation is important for bone regeneration therapy. miRNAs are known as important regulators, not only in a variety of cellular processes, but also in the pathogenesis of bone diseases. In the present study, we investigated the potential roles of miR-206 during osteoblast differentiation. We report that miR-206 expression was significantly down-regulated in human bone marrow mesenchymal stem cells (BMSCs) at days 7 and 14 during osteogenic induction. Furthermore, miR-206 overexpressing BMSCs showed attenuated alkaline phosphatase (ALP) activity, Alizarin Red staining, and osteocalcin secretion. The mRNA levels of osteogenic markers, Runx2 and Osteopontin (OPN), were significantly down-regulated in miR-206 overexpressing BMSCs. We observed that significantly increased glutamine uptake at days 7 and 14 during the osteogenic induction and inhibition of glutamine metabolism by knocking down glutaminase (GLS)-suppressed osteogenic differentiation of BMSCs. Here, we discover that miR-206 could directly bind to the 3′-UTR region of GLS mRNA, resulting in suppressed GLS expression and glutamine metabolism. Finally, restoration of GLS in miR-206 overexpressing BMSCs led to recovery of glutamine metabolism and osteogenic differentiation. In summary, these results reveal a new insight into the mechanisms of the miR-206-mediated osteogenesis through regulating glutamine metabolism. Our study may contribute to the development of therapeutic agents against bone diseases.


2020 ◽  
Author(s):  
Zhi Peng ◽  
Zhenkai Lou ◽  
Zhongjie Li ◽  
Shaobo Li ◽  
Kaishun Yang ◽  
...  

Abstract Background: Osteoporosis is the most common bone metabolic disease. Emerging evidence suggests that exosomes are secreted by diverse cells such as bone marrow mesenchymal stem cells (BMSCs), and play important role in cell-to-cell communication and tissue homeostasis. Recently, the discovery of exosomes has attracted attention in the field of bone remodeling. Methods: The exosomes were extracted from BMSCs and labeled by PKH-67, and then incubated with hFOB1.19 cells to investigate the miR-196a function on the osteoblast differentiation of hFOB1.19. The osteoblast differentiation was detected via alizarin red staining and the expression of osteoblast genes were detected by western blot. The cell apoptosis was detected by flow cytometer. The target relationship of miR-196a and Dickkopf-1 (Dkk1) were verified by luciferase assay and western blot. Results: Here we demonstrated that exosomes extracted from BMSCs (BMSC-exo) significantly promoted hFOB1.19 differentiation to osteoblasts. We found that BMSC-exo were enriched with miR-196a and delivered miR-196a to hFOB1.19 cells to inhibit its target Dkk1, which is a negative regulator of Wnt/β-catenin pathway. Conclusion: BMSC-exo activated Wnt/β-catenin pathway to promote osteogenic differentiation, while BMSC-exo failed to exert the effects when miR-196a was deprived. In conclusion, miR-196a delivered by exosomes from BMSCs plays an essential role in enhancing osteoblastic differentiation by targeting Dkk1 to activate Wnt/β-catenin pathway.


2022 ◽  
Vol 12 (4) ◽  
pp. 794-799
Author(s):  
Le Chang ◽  
Wei Duan ◽  
Chuang Wang ◽  
Jian Zhang

This study was to determine whether microRNA (miRNA)-126 regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Rat BMSCs were extracted and stimulated for osteogenic differentiation. Functional experiments were conducted to assess miR-126’s impact on BMSCs differentiation. Western blot and RT-qPCR determined miR-126 expression. ALP activity detection and alizarin red staining detection were also performed. After osteogenic differentiation of BMSCs, miR-126 expression was gradually decreased over time. Overexpression of miR-26 decreased ALP activity, Notch signaling activity as well as declined Runx2 expression and calcium Salt nodules after treatment. Importantly, we found that Smad4 serves as a target of miR-126 while upregulation of the miRNA was accompanied with the decreased Smad4 protein expression without affecting the Smad4 mRNA level. In conclusion, miR-126 restrains osteogenic differentiation through inhibition of SMAD4 signaling, providing a novel insight into the mechanism.


2017 ◽  
Vol 60 (6) ◽  
pp. 326-334 ◽  
Author(s):  
Carla Martins Kaneto ◽  
Patrícia S. Pereira Lima ◽  
Karen Lima Prata ◽  
Jane Lima dos Santos ◽  
João Monteiro de Pina Neto ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 957-962
Author(s):  
Ainiwaerjiang Damaola ◽  
Maerdan Aierken ◽  
Mieralimu Muertizha ◽  
Abudouaini Abudoureheman ◽  
Haishan Lin ◽  
...  

We aimed to explore the effects of rat bone marrow mesenchymal stem cells (BMSCs) on osteogenic differentiation via analyzing miR-3148 expression in patients with osteoporosis. Realtime quantitative PCR was conducted for assessing microRNA-3148 expression. BMSCs from SD rats were transfected with microRNA-3148 mimics and microRNA-3148 inhibitor via liposomal trans-fection method utilizing Lipo2000, followed by analysis of microRNA-3148 level. After 10-days of osteogenic differentiation induction, alkaline phosphatase (ALP) staining and alizarin red (ARS) staining were done to investigate the osteogenic differentiation potential. Simultaneously, qRT-PCR measured the expression of osteogenesis marker genes (BMP and Runx2) in each group. qRT-PCR analysis revealed a high expression of miR-3148 in the bone tissue and the serum samples from patients with osteoporosis in comparison with healthy individuals. In addition, miRNA-3148 mimics could retard the osteogenic differentiation of BMSCs, while microRNA-3148 inhibitor could prompt the procedure. MicroRNA-3148 was highly expressed in the skeletal tissues and the serum samples from patients with osteoporosis and it could restrain the differentiation of BMSCs into osteoblasts, suggesting that it might be a novel therapeutic target for treating osteoporosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Xudong Wang ◽  
Tongzhou Liang ◽  
Jincheng Qiu ◽  
Xianjian Qiu ◽  
Bo Gao ◽  
...  

Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro culture results in loss of MSC stemness. The inflammation that occurs at stem cell transplant sites (such as that resulting from TNF-α) is a contributing factor for stem cell treatment failure. Currently, there is little evidence regarding the protective role of melatonin with regard to the negative effects of TNF-α on the stemness of MSCs. In this study, we report a melatonin-based method to reduce the inflammatory effects on the stemness of bone marrow mesenchymal stem cells (BMMSCs). The results of colony formation assays, Alizarin red staining, western blotting, and reverse transcription-polymerase chain reactions suggest that melatonin can reverse the inflammatory damage caused by TNF-α treatment in the third, seventh, and tenth generations of primary BMMSCs (vs. control and the TNF-α-treated group). Meanwhile, a detailed analysis of the molecular mechanisms showed that the melatonin receptor and YAP signaling pathway are closely related to the role that melatonin plays in negative inflammatory effects against BMMSCs. In addition, in vivo experiments showed that melatonin could reverse the damage caused by TNF-α on bone regeneration by BMMSCs in nude mice. Overall, our results suggest that melatonin can reverse the loss of stemness caused by inflammatory factor TNF-α in BMMSCs. Our results also provide a practical strategy for the application of BMMSCs in tissue engineering and cell therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianliang Gao ◽  
Shouyu Xiang ◽  
Xiao Wei ◽  
Ram Ishwar Yadav ◽  
Menghu Han ◽  
...  

Osteoporosis (OP) is a metabolic disease characterized by decreased bone mass and increased risk of fragility fractures, which significantly reduces the quality of life. Stem cell-based therapies, especially using bone marrow mesenchymal stem cells (BMSCs), are a promising strategy for treating OP. Nevertheless, the survival and differentiation rates of the transplanted BMSCs are low, which limits their therapeutic efficiency. Icariin (ICA) is a traditional Chinese medicine formulation that is prescribed for tonifying the kidneys. It also promotes the proliferation and osteogenic differentiation of BMSCs, although the specific mechanism remains unclear. Based on our previous research, we hypothesized that ICA promotes bone formation via the sclerostin/Wnt/β-catenin signaling pathway. We isolated rat BMSCs and transfected them with sclerostin gene (SOST) overexpressing or knockdown constructs and assessed osteogenic induction in the presence or absence of ICA. Sclerostin significantly inhibited BMSC proliferation and osteogenic differentiation, whereas the presence of ICA not only increased the number of viable BMSCs but also enhanced ALP activity and formation of calcium nodules during osteogenic induction. In addition, the osteogenic genes including Runx2, β-catenin, and c-myc as well as antioxidant factors (Prdx1, Cata, and Nqo1) were downregulated by sclerostin and restored by ICA treatment. Mechanistically, ICA exerted these effects by activating the Wnt/β-catenin pathway. In conclusion, ICA can promote the proliferation and osteogenic differentiation of BMSCs in situ and therefore may enhance the therapeutic efficiency of BMSC transplantation in OP.


Sign in / Sign up

Export Citation Format

Share Document