scholarly journals Gene expression profiling of pre-eclamptic placentae by RNA sequencing

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Tea Kaartokallio ◽  
◽  
Alejandra Cervera ◽  
Anjuska Kyllönen ◽  
Krista Laivuori ◽  
...  

Abstract Pre-eclampsia is a common and complex pregnancy disorder that often involves impaired placental development. In order to identify altered gene expression in pre-eclamptic placenta, we sequenced placental transcriptomes of nine pre-eclamptic and nine healthy pregnant women in pools of three. The differential gene expression was tested both by including all the pools in the analysis and by excluding some of the pools based on phenotypic characteristics. From these analyses, we identified altogether 53 differently expressed genes, a subset of which was validated by qPCR in 20 cases and 19 controls. Furthermore, we conducted pathway and functional analyses which revealed disturbed vascular function and immunological balance in pre-eclamptic placenta. Some of the genes identified in our study have been reported by numerous microarray studies (BHLHE40, FSTL3, HK2, HTRA4, LEP, PVRL4, SASH1, SIGLEC6), but many have been implicated in only few studies or have not previously been linked to pre-eclampsia (ARMS2, BTNL9, CCSAP, DIO2, FER1L4, HPSE, LOC100129345, LYN, MYO7B, NCMAP, NDRG1, NRIP1, PLIN2, SBSPON, SERPINB9, SH3BP5, TET3, TPBG, ZNF175). Several of the molecules produced by these genes may have a role in the pathogenesis of pre-eclampsia and some could qualify as biomarkers for prediction or detection of this pregnancy complication.


2020 ◽  
Author(s):  
Theresa E. Bjorness ◽  
Ashwinikumar Kulkarni ◽  
Volodymer Rybalchenko ◽  
Ayako Suzuki ◽  
Catherine Bridges ◽  
...  

AbstractNeuronal activity and gene expression in response to the loss of sleep can provide a window into the enigma of sleep function. Sleep loss is associated with brain differential gene expression, an increase in pyramidal cell mEPSC frequency and amplitude, and a characteristic rebound and resolution of slow wave sleep-slow wave activity (SWS-SWA). However, the molecular mechanism(s) mediating the sleep loss response are not well understood. We show that sleep-loss regulates MEF2C phosphorylation, a key mechanism regulating MEF2C transcriptional activity, and that MEF2C function in postnatal excitatory forebrain neurons is required for the biological events in response to sleep loss. These include altered gene expression, the increase and recovery of synaptic strength, and the rebound and resolution of SWS-SWA, which implicate MEF2C as an essential regulator of sleep function.One Sentence SummaryMEF2C is critical to the response to sleep loss.



eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Theresa E Bjorness ◽  
Ashwinikumar Kulkarni ◽  
Volodymyr Rybalchenko ◽  
Ayako Suzuki ◽  
Catherine Bridges ◽  
...  

Neuronal activity and gene expression in response to the loss of sleep can provide a window into the enigma of sleep function. Sleep loss is associated with brain differential gene expression, an increase in pyramidal cell mEPSC frequency and amplitude, and a characteristic rebound and resolution of slow wave sleep-slow wave activity (SWS-SWA). However, the molecular mechanism(s) mediating the sleep-loss response are not well understood. We show that sleep-loss regulates MEF2C phosphorylation, a key mechanism regulating MEF2C transcriptional activity, and that MEF2C function in postnatal excitatory forebrain neurons is required for the biological events in response to sleep loss in C57BL/6J mice. These include altered gene expression, the increase and recovery of synaptic strength, and the rebound and resolution of SWS-SWA, which implicate MEF2C as an essential regulator of sleep function.



Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.



Endoscopy ◽  
2004 ◽  
Vol 36 (05) ◽  
Author(s):  
K Collins ◽  
GA Doherty ◽  
MR Sweeney ◽  
SM Byrne ◽  
AA Aftab ◽  
...  




2021 ◽  
pp. 117462
Author(s):  
Victor Carrasco-Navarro ◽  
Ana-Belén Muñiz González ◽  
Jouni Sorvari ◽  
Jose-Luis Martínez Guitarte


2014 ◽  
Vol 26 (8) ◽  
pp. 3243-3260 ◽  
Author(s):  
Canan Külahoglu ◽  
Alisandra K. Denton ◽  
Manuel Sommer ◽  
Janina Maß ◽  
Simon Schliesky ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document