scholarly journals Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Shufen Han ◽  
Jun Jiao ◽  
Wei Zhang ◽  
Jiaying Xu ◽  
Zhongxiao Wan ◽  
...  
2013 ◽  
Vol 6 (2) ◽  
pp. 107-122 ◽  
Author(s):  
Frédéric Capel ◽  
Gaëlle Rolland-Valognes ◽  
Catherine Dacquet ◽  
Manuel Brun ◽  
Michel Lonchampt ◽  
...  

2003 ◽  
Vol 285 (6) ◽  
pp. E1182-E1195 ◽  
Author(s):  
Kenji Harada ◽  
Wen-Jun Shen ◽  
Shailja Patel ◽  
Vanita Natu ◽  
Jining Wang ◽  
...  

To elucidate the role of hormone-sensitive lipase (HSL) in diet-induced obesity, HSL-deficient ( HSL– /–) and wild-type mice were fed normal chow or high-fat diets. HSL– /– mice were resistant to diet-induced obesity showing higher core body temperatures. Weight and triacylglycerol contents were decreased in white adipose tissue (WAT) but increased in both brown adipose tissue (BAT) and liver of HSL– /– mice. Serum insulin levels in the fed state and tumor necrosis factor-α mRNA levels in adipose tissues were higher, whereas serum levels of adipocyte complement-related protein of 30 kDa (ACRP30)/adiponectin and leptin, as well as mRNA levels of ACRP30/adiponectin, leptin, resistin, and adipsin in WAT, were lower in HSL– /– mice than in controls. Expression of transcription factors associated with adipogenesis (peroxisome proliferator-activated receptor-γ, CAAT/enhancer-binding protein-α) and lipogenesis (carbohydrate response element-binding protein, adipocyte determination- and differentiation-dependent factor-1/sterol regulatory element-binding protein-1c), as well as of adipose differentiation markers (adipocyte lipid-binding protein, perilipin, lipoprotein lipase), lipogenic enzymes (glycerol-3-phosphate acyltransferase, acyl-CoA:diacylglycerol acyltransferase-1 and -2, fatty acid synthase, ATP citrate lyase) and insulin signaling proteins (insulin receptor, insulin receptor substrate-1, GLUT4), was suppressed in WAT but not in BAT of HSL– /– mice. In contrast, expression of genes associated with cholesterol metabolism (sterol-regulatory element-binding protein-2, 3-hydroxy-3-methylglutaryl-CoA reductase, acyl-CoA:cholesterol acyltransferase-1) and thermogenesis (uncoupling protein-2) was upregulated in both WAT and BAT of HSL– /– mice. Our results suggest that impaired lipolysis in HSL deficiency affects lipid metabolism through alterations of adipose differentiation and adipose-derived hormone levels.


1995 ◽  
Vol 270 (49) ◽  
pp. 29422-29427 ◽  
Author(s):  
Xianxin Hua ◽  
Juro Sakai ◽  
Ho Y. K. ◽  
Joseph L. Goldstein ◽  
Michael S. Brown

2009 ◽  
Vol 29 (17) ◽  
pp. 4864-4872 ◽  
Author(s):  
Seung-Soon Im ◽  
Linda E. Hammond ◽  
Leyla Yousef ◽  
Cherryl Nugas-Selby ◽  
Dong-Ju Shin ◽  
...  

ABSTRACT We generated a line of mice in which sterol regulatory element binding protein 1a (SREBP-1a) was specifically inactivated by insertional mutagenesis. Homozygous mutant mice were completely viable despite expressing SREBP-1a mRNA below 5% of normal, and there were minimal effects on expression of either SREBP-1c or -2. Microarray expression studies in liver, where SREBP-1a mRNA is 1/10 the level of the highly similar SREBP-1c, demonstrated that only a few genes were affected. The only downregulated genes directly linked to lipid metabolism were Srebf1 (which encodes SREBP-1) and Acacb (which encodes acetyl coenzyme A [acetyl-CoA] carboxylase 2 [ACC2], a critical regulator of fatty acyl-CoA partitioning between cytosol and mitochondria). ACC2 regulation is particularly important during food restriction. Similar to Acacb knockout mice, SREBP-1a-deficient mice have lower hepatic triglycerides and higher serum ketones during fasting than wild-type mice. SREBP-1a and -1c have identical DNA binding and dimerization domains; thus, the failure of the more abundant SREBP-1c to substitute for activating hepatic ACC2 must relate to more efficient recruitment of transcriptional coactivators to the more potent SREBP-1a activation domain. Our chromatin immunoprecipitation results support this hypothesis.


2003 ◽  
Vol 376 (3) ◽  
pp. 697-705 ◽  
Author(s):  
Pascale G. RIBAUX ◽  
Patrick B. IYNEDJIAN

Previous work showed that acute stimulation of a conditionally active protein kinase B (PKB or cAKT) was sufficient to elicit insulin-like induction of GCK (glucokinase) and SREBP1 (sterol regulatory element-binding protein 1) in hepatocytes [Iynedjian, Roth, Fleischmann and Gjinovci (2000) Biochem. J. 351, 621–627; Fleischmann and Iynedjian (2000) Biochem. J. 349, 13–17]. The objective of the present study was to determine whether activation of PKB during insulin stimulation of hepatocytes was a necessary condition for the induction of the two genes. Activation of PKB by insulin was inhibited by pretreatment of the hepatocytes with C2 ceramide. This resulted in the inhibition of insulin-dependent increases in GCK and SREBP1 mRNAs. A triple mutant of PKB failed to interfere with insulin activation of PKB in hepatocytes even at high overexpression levels achieved after adenovirus transduction. A PKB–CaaX fusion protein, which can act as a dominant-negative inhibitor of PKB activation in other cells, was shown to be constitutively activated in hepatocytes and to trigger insulin-like induction of GCK and SREBP1. In addition, constitutive PKB–CaaX activity caused refractoriness of the hepatocytes to insulin signalling at an upstream step resulting in the inhibition of both extracellular-signal-regulated kinase 1/2 and endogenous PKB activation. The stimulation of gene expression by constitutively active PKB–CaaX and inhibition of the insulin effect by ceramide are compatible with a role for PKB in the insulin-dependent induction of GCK and SREBP1.


Sign in / Sign up

Export Citation Format

Share Document