scholarly journals Inhibition of sterol regulatory element-binding protein-2 alleviates high-fat diet-induced deterioration of knee cartilage: an osteoarthritis animal model study

2019 ◽  
Vol 27 ◽  
pp. S377 ◽  
Author(s):  
K. Tao ◽  
R. Li ◽  
H. Li ◽  
Y. Ke ◽  
J. Lin
2013 ◽  
Vol 6 (2) ◽  
pp. 107-122 ◽  
Author(s):  
Frédéric Capel ◽  
Gaëlle Rolland-Valognes ◽  
Catherine Dacquet ◽  
Manuel Brun ◽  
Michel Lonchampt ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Liu Wang ◽  
Xiaopeng Zhu ◽  
Xiaoyang Sun ◽  
Xinyu Yang ◽  
Xinxia Chang ◽  
...  

Abstract Background Excessive intrahepatic lipid accumulation is the major characteristic of nonalcoholic fatty liver disease (NAFLD). We sought to identify the mechanisms involved in hepatic triglyceride (TG) homeostasis. Forkhead box class O (FoxO) transcription factors have been shown to play an important role in hepatic metabolism. However, little is known about the effect of FoxO3 on hepatic TG metabolism. Methods Liver biopsy samples from patients with NALFD and liver tissues from high glucose and high sucrose (HFHS) fed mice, ob/ob mice and db/db mice were collected for protein and mRNA analysis. HepG2 cells were transfected with small interfering RNA to mediate FoxO3 knockdown, or adenovirus and plasmid to mediate FoxO3 overexpression. FoxO3-cDNA was delivered by adenovirus to the liver of C57BL/6 J male mice on a chow diet or on a high-fat diet, followed by determination of hepatic lipid metabolism. Sterol regulatory element-binding protein 1c (SREBP1c) luciferase reporter gene plasmid was co-transfected into HepG2 cells with FoxO3 overexpression plasmid. Results FoxO3 expression was increased in the livers of HFHS mice, ob/ob mice, db/db mice and patients with NAFLD. Knockdown of FoxO3 reduced whereas overexpression of FoxO3 increased cellular TG concentrations in HepG2 cells. FoxO3 gain-of-function caused hepatic TG deposition in C57BL/6 J mice on a chow diet and aggravated hepatic steatosis when fed a high-fat diet. Analysis of the transcripts established the increased expression of genes related to TG synthesis, including SREBP1c, SCD1, FAS, ACC1, GPAM and DGAT2 in mouse liver. Mechanistically, overexpression of FoxO3 stimulated the expression of SREBP1c, whereas knockdown of FoxO3 inhibited the expression of SREBP1c. Luciferase reporter assays showed that SREBP1c regulated the transcriptional activity of the SREBP1c promoter. Conclusions FoxO3 promotes the transcriptional activity of the SREBP1c promoter, thus leading to increased TG synthesis and hepatic TG accumulation.


2019 ◽  
Vol 317 (4) ◽  
pp. H793-H810 ◽  
Author(s):  
Qiying Fan ◽  
Xing Yin ◽  
Abeer Rababa’h ◽  
Andrea Diaz Diaz ◽  
Cori S. Wijaya ◽  
...  

Gravin, an A-kinase anchoring protein, is known to play a role in regulating key processes that lead to inflammation and atherosclerosis development, namely, cell migration, proliferation, and apoptosis. We investigated the role of gravin in the development of high-fat diet (HFD)-induced atherosclerosis and hyperlipidemia. Five-week-old male wild-type (WT) and gravin-t/t mice were fed a normal diet or an HFD for 16 wk. Gravin-t/t mice showed significantly lower liver-to-body-weight ratio, cholesterol, triglyceride, and very low-density lipoprotein levels in serum as compared with WT mice on HFD. Furthermore, there was less aortic plaque formation coupled with decreased lipid accumulation and liver damage, as the gravin-t/t mice had lower levels of serum alanine aminotransferase and aspartate aminotransferase. Additionally, gravin-t/t HFD-fed mice had decreased expression of liver 3-hydroxy-3-methyl-glutaryl-CoA reductase, an essential enzyme for cholesterol synthesis and lower fatty acid synthase expression. Gravin-t/t HFD-fed mice also exhibited inhibition of sterol regulatory element binding protein-2 (SREBP-2) expression, a liver transcription factor associated with the regulation of lipid transportation. In response to platelet-derived growth factor receptor treatment, gravin-t/t vascular smooth muscle cells exhibited lower intracellular calcium transients and decreased protein kinase A- and protein kinase C-dependent substrate phosphorylation, notably involving the Erk1/2 signaling pathway. Collectively, these results suggest the involvement of gravin-dependent regulation of lipid metabolism via the reduction of SREBP-2 expression. The absence of gravin-mediated signaling lowers blood pressure, reduces plaque formation in the aorta, and decreases lipid accumulation and damage in the liver of HFD mice. Through these processes, the absence of gravin-mediated signaling complex delays the HFD-induced hyperlipidemia and atherosclerosis. NEW & NOTEWORTHY The gravin scaffolding protein plays a key role in the multiple enzymatic pathways of lipid metabolism. We have shown for the first time the novel role of gravin in regulating the pathways related to the initiation and progression of atherosclerosis. Specifically, an absence of gravin-mediated signaling decreases the lipid levels (cholesterol, triglyceride, and VLDL) that are associated with sterol regulatory element binding protein-2 downregulation.


2003 ◽  
Vol 285 (6) ◽  
pp. E1182-E1195 ◽  
Author(s):  
Kenji Harada ◽  
Wen-Jun Shen ◽  
Shailja Patel ◽  
Vanita Natu ◽  
Jining Wang ◽  
...  

To elucidate the role of hormone-sensitive lipase (HSL) in diet-induced obesity, HSL-deficient ( HSL– /–) and wild-type mice were fed normal chow or high-fat diets. HSL– /– mice were resistant to diet-induced obesity showing higher core body temperatures. Weight and triacylglycerol contents were decreased in white adipose tissue (WAT) but increased in both brown adipose tissue (BAT) and liver of HSL– /– mice. Serum insulin levels in the fed state and tumor necrosis factor-α mRNA levels in adipose tissues were higher, whereas serum levels of adipocyte complement-related protein of 30 kDa (ACRP30)/adiponectin and leptin, as well as mRNA levels of ACRP30/adiponectin, leptin, resistin, and adipsin in WAT, were lower in HSL– /– mice than in controls. Expression of transcription factors associated with adipogenesis (peroxisome proliferator-activated receptor-γ, CAAT/enhancer-binding protein-α) and lipogenesis (carbohydrate response element-binding protein, adipocyte determination- and differentiation-dependent factor-1/sterol regulatory element-binding protein-1c), as well as of adipose differentiation markers (adipocyte lipid-binding protein, perilipin, lipoprotein lipase), lipogenic enzymes (glycerol-3-phosphate acyltransferase, acyl-CoA:diacylglycerol acyltransferase-1 and -2, fatty acid synthase, ATP citrate lyase) and insulin signaling proteins (insulin receptor, insulin receptor substrate-1, GLUT4), was suppressed in WAT but not in BAT of HSL– /– mice. In contrast, expression of genes associated with cholesterol metabolism (sterol-regulatory element-binding protein-2, 3-hydroxy-3-methylglutaryl-CoA reductase, acyl-CoA:cholesterol acyltransferase-1) and thermogenesis (uncoupling protein-2) was upregulated in both WAT and BAT of HSL– /– mice. Our results suggest that impaired lipolysis in HSL deficiency affects lipid metabolism through alterations of adipose differentiation and adipose-derived hormone levels.


Reproduction ◽  
2021 ◽  
Author(s):  
Wen-jing Guo ◽  
Yi-cheng Wang ◽  
Yong-dan Ma ◽  
Zhi-hui Cui ◽  
Li-xue Zhang ◽  
...  

The incidence of PCOS due to highfat diet (HFD) consumption has been increasing significantly. However, the mechanism by which an HFD contributes to the pathogenesis of PCOS has not been elucidated. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key protein that regulates cholesterol metabolism. Our previous study revealed abnormally high PCSK9 levels in serum from patients with PCOS and in serum and hepatic and ovarian tissues from PCOS model mice, suggesting that PCSK9 is involved in the pathogenesis of PCOS. However, the factor that induces high PCSK9 expression in PCOS remained unclear. In this study, Pcsk9 knockout mice were used to further prove the role of PCSK9 in PCOS. We also studied the effects of an HFD on the expression of PCSK9 and sterol regulatory element-binding protein 2 (SREBP2), a regulator of cholesterol homeostasis and a key transcription factor that regulates the expression of PCSK9, and the roles of these proteins in PCOS pathology. Our results indicated HFD may play an important role by inducing abnormally high PCSK9 expression via SREBP2 upregulation. We further investigated the effects of an effective SREBPs inhibitor, fatostain, and found that it could reduce HFD induced PCSK9 expression, ameliorate hyperlipidemia and improve follicular development in PCOS model mice. Our study thus further elucidates the important role of an HFD in the pathogenesis of PCOS and provides a new clue in the prevention and treatment of this disorder.


Sign in / Sign up

Export Citation Format

Share Document