scholarly journals Population structure and acquisition of the vanB resistance determinant in German clinical isolates of Enterococcus faecium ST192

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jennifer K. Bender ◽  
Alexander Kalmbach ◽  
Carola Fleige ◽  
Ingo Klare ◽  
Stephan Fuchs ◽  
...  
2014 ◽  
Vol 63 (11) ◽  
pp. 1484-1489 ◽  
Author(s):  
Chunhui Chen ◽  
Xiaogang Xu ◽  
Tingting Qu ◽  
Yunsong Yu ◽  
Chunmei Ying ◽  
...  

In order to investigate the prevalence of fosfomycin-resistance (fos) determinants in Enterococcus faecium, clinical strains were collected from hospitals throughout China between January 2008 and December 2009. Antimicrobial susceptibility testing was performed, after which the fos genes in all isolates and van genes in vancomycin-resistant isolates were characterized by PCR and sequencing. Conjugation experiments were carried out with fosB-positive E. faecium, DNA fragments flanking the fosB3 gene were sequenced and the genetic environment of fosB3 was analysed. Fosfomycin-resistant E. faecium (FREF) strains were characterized further by multilocus sequence typing (MLST) and PFGE. Among 145 E. faecium clinical isolates, 10 were resistant to fosfomycin with MICs >1024 mg l−1 including six vancomycin-resistant strains of which five were vanA-positive and the sixth vanM-positive. All ten FREF strains harboured the fosB3 gene. Fosfomycin resistance and fosB3 could be transferred by conjugation from nine isolates. The fosB3 and tnpA genes were located in a circular DNA intermediate in all FREF strains and reversely inserted into vanA transposon Tn1546 in four vanA-positive FREF isolates. Ten different PFGE types and seven MLST types were found among the ten fosB3-positive isolates, while all strains belonged to the common clonal complex CC17. In conclusion, the transferable fosfomycin-resistance determinant fosB3 plays an important role in E. faecium resistance to fosfomycin in China.


2020 ◽  
Vol 8 (10) ◽  
pp. 1626
Author(s):  
Mahfouz Nasser ◽  
Snehal Palwe ◽  
Ram Naresh Bhargava ◽  
Marc G. J. Feuilloley ◽  
Arun S. Kharat

The production of diverse and extended spectrum β-lactamases among Escherichia coli and ESKAPE pathogens is a growing threat to clinicians and public health. We aim to provide a comprehensive analysis of evolving trends of antimicrobial resistance and β-lactamases among E. coli and ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine to bacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) in the Arabian region. A systematic review was conducted in Medline PubMed on papers published between January 2000 and February 2020 on countries in the Arab region showing different antibiotic resistance among E. coli and ESKAPE pathogens. A total of n = 119,144 clinical isolates were evaluated for antimicrobial resistance in 19 Arab countries. Among these clinical isolates, 74,039 belonged to E. coli and ESKAPE pathogen. Distribution of antibiotic resistance among E. coli and ESKAPE pathogens indicated that E. coli (n = 32,038) was the predominant pathogen followed by K. pneumoniae (n = 17,128), P. aeruginosa (n = 11,074), methicillin-resistant S. aureus (MRSA, n = 4370), A. baumannii (n = 3485) and Enterobacter spp. (n = 1574). There were no reports demonstrating Enterococcus faecium producing β-lactamase. Analyses revealed 19 out of 22 countries reported occurrence of ESBL (Extended-Spectrum β-Lactamase) producing E. coli and ESKAPE pathogens. The present study showed significantly increased resistance rates to various antimicrobial agents over the last 20 years; for instance, cephalosporin resistance increased from 37 to 89.5%, fluoroquinolones from 46.8 to 70.3%, aminoglycosides from 40.2 to 64.4%, mono-bactams from 30.6 to 73.6% and carbapenems from 30.5 to 64.4%. An average of 36.9% of the total isolates were reported to have ESBL phenotype during 2000 to 2020. Molecular analyses showed that among ESBLs and Class A and Class D β-lactamases, blaCTX-M and blaOXA have higher prevalence rates of 57% and 52.7%, respectively. Among Class B β-lactamases, few incidences of blaVIM 27.7% and blaNDM 26.3% were encountered in the Arab region. Conclusion: This review highlights a significant increase in resistance to various classes of antibiotics, including cephalosporins, β-lactam and β-lactamase inhibitor combinations, carbapenems, aminoglycosides and quinolones among E. coli and ESKAPE pathogens in the Arab region.


1999 ◽  
Vol 43 (10) ◽  
pp. 2513-2516 ◽  
Author(s):  
Sylvain Brisse ◽  
Ad C. Fluit ◽  
Ulrich Wagner ◽  
Peter Heisig ◽  
Dana Milatovic ◽  
...  

ABSTRACT The parC and gyrA genes of 73 ciprofloxacin-resistant and 6 ciprofloxacin-susceptibleEnterococcus faecium clinical isolates were partly sequenced. Alterations in ParC and GyrA, possibly in combination with other resistance mechanisms, severely restricted the in vitro activities of the nine quinolones tested. For all isolates, clinafloxacin and sitafloxacin showed the best activities.


1988 ◽  
Vol 32 (10) ◽  
pp. 1528-1532 ◽  
Author(s):  
G M Eliopoulos ◽  
C Wennersten ◽  
S Zighelboim-Daum ◽  
E Reiszner ◽  
D Goldmann ◽  
...  

2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Razieh Kebriaei ◽  
Seth A. Rice ◽  
Kavindra V. Singh ◽  
Kyle C. Stamper ◽  
An Q. Dinh ◽  
...  

ABSTRACT Enterococcus faecium isolates that harbor LiaFSR substitutions but are phenotypically susceptible to daptomycin (DAP) by current breakpoints are problematic, since predisposition to resistance may lead to therapeutic failure. Using a simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic (PK/PD) model, we investigated DAP regimens (6, 8, and 10 mg/kg of body weight/day) as monotherapy and in combination with ampicillin (AMP), ceftaroline (CPT), or ertapenem (ERT) against E. faecium HOU503, a DAP-susceptible strain that harbors common LiaS and LiaR substitutions found in clinical isolates (T120S and W73C, respectively). Of interest, the efficacy of DAP monotherapy, at any dose regimen, was dependent on the size of the inoculum. At an inoculum of ∼109 CFU/g, DAP doses of 6 to 8 mg/kg/day were not effective and led to significant regrowth with emergence of resistant derivatives. In contrast, at an inoculum of ∼107 CFU/g, marked reductions in bacterial counts were observed with DAP at 6 mg/kg/day, with no resistance. The inoculum effect was confirmed in a rat model using humanized DAP exposures. Combinations of DAP with AMP, CPT, or ERT demonstrated enhanced eradication and reduced potential for resistance, allowing de-escalation of the DAP dose. Persistence of the LiaRS substitutions was identified in DAP-resistant isolates recovered from the SEV model and in DAP-resistant derivatives of an initially DAP-susceptible clinical isolate of E. faecium (HOU668) harboring LiaSR substitutions that was recovered from a patient with a recurrent bloodstream infection. Our results provide novel data for the use of DAP monotherapy and combinations for recalcitrant E. faecium infections and pave the way for testing these approaches in humans.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S509-S510
Author(s):  
Abhay Dhand ◽  
Leslie Lee ◽  
Nicholas Feola ◽  
Donald Chen ◽  
Nevenka Dimitrova ◽  
...  

2020 ◽  
Vol 82 ◽  
pp. 104318
Author(s):  
Daniel S. Squire ◽  
Alan J. Lymbery ◽  
Jennifer Walters ◽  
Frances Brigg ◽  
Andrea Paparini ◽  
...  

2003 ◽  
Vol 47 (2) ◽  
pp. 529-532 ◽  
Author(s):  
Esteban C. Nannini ◽  
Suresh R. Pai ◽  
Kavindra V. Singh ◽  
Barbara E. Murray

ABSTRACT A novel glycylcycline agent, tigecycline (GAR-936), was evaluated in vivo in the mouse model of peritonitis against three Enterococcus faecalis and four Enterococcus faecium isolates with different susceptibilities to vancomycin and tetracyclines, all of which were inhibited by ≤0.125 μg of tigecycline/ml. Using a single subcutaneous dose, tigecycline displayed a protective effect (50% protective dose, ≤5.7 mg/kg of body weight) against all strains tested, including two with Tn925 (from the Tn916 family), which contains the Tet(M) tetracycline resistance determinant, as well as VanA and VanB strains. As expected, tetracycline and minocycline were ineffective against the isolates carrying Tn925.


Sign in / Sign up

Export Citation Format

Share Document