scholarly journals Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yaxia Yuan ◽  
Pamela M. Quizon ◽  
Wei-Lun Sun ◽  
Jianzhuang Yao ◽  
Jun Zhu ◽  
...  
Author(s):  
Pamela M. Quizon ◽  
Yaxia Yuan ◽  
Yike Zhu ◽  
Yi Zhou ◽  
Matthew J. Strauss ◽  
...  

AbstractHIV-1 transactivator of transcription (Tat) has a great impact on the development of HIV-1 associated neurocognitive disorders through disrupting dopamine transmission. This study determined the mutational effects of human dopamine transporter (hDAT) on basal and Tat-induced inhibition of dopamine transport. Compared to wild-type hDAT, the maximal velocity (Vmax) of [3H]dopamine uptake was decreased in D381L and Y88F/D206L/H547A, increased in D206L/H547A, and unaltered in D206L. Recombinant TatR1 − 86 inhibited dopamine uptake in wild-type hDAT, which was attenuated in either DAT mutants (D206L, D206L/H547A, and Y88F/D206L/H547A) or mutated TatR1 − 86 (K19A and C22G), demonstrating perturbed Tat-DAT interaction. Mutational effects of hDAT on the transporter conformation were evidenced by attenuation of zinc-induced increased [3H]WIN35,428 binding in D206L/H547A and Y88F/D206A/H547A and enhanced basal MPP+ efflux in D206L/H547A. H547A-induced outward-open transport conformational state was further validated by enhanced accessibility to MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) of an inserted cysteine (I159C) on a hDAT background.. Furthermore, H547A displayed an increase in palmitoylation inhibitor-induced inhibition of dopamine uptake relative to wide-type hDAT, indicating a change in basal palmitoylation in H547A. These results demonstrate that Y88F, D206L, and H547A attenuate Tat inhibition while preserving DA uptake, providing insights into identifying targets for improving DAT-mediated dopaminergic dysregulation. Graphical Abstract HIV-1 Tat inhibits dopamine uptake through human dopamine transporter (hDAT) on the presynaptic terminal through a direct allosteric interaction. Key hDAT residues D-H547, D-Y88, and D-D206 are predicted to be involved in the HIV-1 Tat-DAT binding. Mutating these residues attenuates this inhibitory effect by disrupting the Tat-hDAT interaction


2013 ◽  
Vol 13 (16) ◽  
pp. 1907-1915 ◽  
Author(s):  
Bart Hoorelbeke ◽  
Youngju Kim ◽  
Toshikazu Oki ◽  
Yasuhiro Igarashi ◽  
Jan Balzarini
Keyword(s):  
Hiv 1 ◽  

2015 ◽  
Vol 14 (1) ◽  
pp. 9-23 ◽  
Author(s):  
Maxime Veillette ◽  
Jonathan Richard ◽  
Marzena Pazgier ◽  
George K. Lewis ◽  
Matthew S. Parsons ◽  
...  

2015 ◽  
Vol 13 (6) ◽  
pp. 479-489
Author(s):  
Amelie Saint Jean ◽  
Thomas Bourlet ◽  
Olivier Delezay
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1425
Author(s):  
Anabel Guedán ◽  
Eve R. Caroe ◽  
Genevieve C. R. Barr ◽  
Kate N. Bishop

HIV-1 can infect non-dividing cells. The nuclear envelope therefore represents a barrier that HIV-1 must traverse in order to gain access to the host cell chromatin for integration. Hence, nuclear entry is a critical step in the early stages of HIV-1 replication. Following membrane fusion, the viral capsid (CA) lattice, which forms the outer face of the retroviral core, makes numerous interactions with cellular proteins that orchestrate the progress of HIV-1 through the replication cycle. The ability of CA to interact with nuclear pore proteins and other host factors around the nuclear pore determines whether nuclear entry occurs. Uncoating, the process by which the CA lattice opens and/or disassembles, is another critical step that must occur prior to integration. Both early and delayed uncoating have detrimental effects on viral infectivity. How uncoating relates to nuclear entry is currently hotly debated. Recent technological advances have led to intense discussions about the timing, location, and requirements for uncoating and have prompted the field to consider alternative uncoating scenarios that presently focus on uncoating at the nuclear pore and within the nuclear compartment. This review describes recent advances in the study of HIV-1 nuclear entry, outlines the interactions of the retroviral CA protein, and discusses the challenges of investigating HIV-1 uncoating.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
János András Mótyán ◽  
Márió Miczi ◽  
Stephen Oroszlan ◽  
József Tőzsér

To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.


ACS Catalysis ◽  
2021 ◽  
pp. 7915-7927
Author(s):  
Simon L. Dürr ◽  
Olga Bohuszewicz ◽  
Dénes Berta ◽  
Reynier Suardiaz ◽  
Pablo G. Jambrina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document