CHAPTER 22. Contrast-Enhanced Imaging of Photodynamic Therapy in Pancreatic Cancer: From Mouse to Man

Author(s):  
Kimberley S. Samkoe ◽  
Scott C. Davis ◽  
Brian W. Pogue
Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 776
Author(s):  
Robert Psar ◽  
Ondrej Urban ◽  
Marie Cerna ◽  
Tomas Rohan ◽  
Martin Hill

(1) Background. The aim was to define typical features of isoattenuating pancreatic carcinomas on computed tomography (CT) and endosonography and determine the yield of fine-needle aspiration endosonography (EUS-FNA) in their diagnosis. (2) Methods. One hundred and seventy-three patients with pancreatic carcinomas underwent multiphase contrast-enhanced CT followed by EUS-FNA at the time of diagnosis. Secondary signs on CT, size and location on EUS, and the yield of EUS-FNA in isoattenuating and hypoattenuating pancreatic cancer, were evaluated. (3) Results. Isoattenuating pancreatic carcinomas occurred in 12.1% of patients. Secondary signs of isoattenuating pancreatic carcinomas on CT were present in 95.2% cases and included dilatation of the pancreatic duct and/or the common bile duct (85.7%), interruption of the pancreatic duct (76.2%), abnormal pancreatic contour (33.3%), and atrophy of the distal parenchyma (9.5%) Compared to hypoattenuating pancreatic carcinomas, isoattenuating carcinomas were more often localized in the pancreatic head (100% vs. 59.2%; p < 0.001). In ROC (receiver operating characteristic) analysis, the optimal cut-off value for the size of isoattenuating carcinomas on EUS was ≤ 25 mm (AUC = 0.898). The sensitivity of EUS-FNA in confirmation of isoattenuating and hypoattenuating pancreatic cancer were 90.5% and 92.8% (p = 0.886). (4) Conclusions. Isoattenuating pancreatic head carcinoma can be revealed by indirect signs on CT and confirmed with high sensitivity by EUS-FNA.


2020 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
César Ray ◽  
Andrés García-Sampedro ◽  
Christopher Schad ◽  
Edurne Avellanal-Zaballa ◽  
Florencio Moreno ◽  
...  

A new approach for the rapid multi-functionalization of BODIPY dyes towards biophotonics is reported. It is based on novel N-BODIPYs, through reactive intermediates with alkynyl groups to be further derivatized by click chemistry. This approach has been exemplified by the development of new dyes for cell bio-imaging, which have proven to successfully internalize into pancreatic cancer cells and accumulate in the mitochondria. The in vitro suitability for photodynamic therapy (PDT) was also analyzed and confirmed our compounds to be promising PDT candidates for the treatment of pancreatic cancer.


2020 ◽  
Vol 9 (1) ◽  
pp. 192 ◽  
Author(s):  
Alexandre Quilbe ◽  
Olivier Moralès ◽  
Martha Baydoun ◽  
Abhishek Kumar ◽  
Rami Mustapha ◽  
...  

To date, pancreatic adenocarcinoma (ADKP) is a devastating disease for which the incidence rate is close to the mortality rate. The survival rate has evolved only 2–5% in 45 years, highlighting the failure of current therapies. Otherwise, the use of photodynamic therapy (PDT), based on the use of an adapted photosensitizer (PS) has already proved its worth and has prompted a growing interest in the field of oncology. We have developed a new photosensitizer (PS-FOL/PS2), protected by a recently published patent (WO2019 016397-A1, 24 January 2019). This photosensitizer is associated with an addressing molecule (folic acid) targeting the folate receptor 1 (FOLR1) with a high affinity. Folate binds to FOLR1, in a specific way, expressed in 100% of ADKP or over-expressed in 30% of cases. The first objective of this study is to evaluate the effectiveness of this PS2-PDT in four ADKP cell lines: Capan-1, Capan-2, MiapaCa-2, and Panc-1. For this purpose, we first evaluated the gene and protein expression of FOLR1 on four ADKP cell lines. Subsequently, we evaluated PS2’s efficacy in our cell lines and we assessed the impact of PDT on the secretome of cancer cells and its impact on the immune system. Finally, we evaluate the PDT efficacy on a humanized SCID mouse model of pancreatic cancer. In a very interesting way, we observed a significant increase in the proliferation of activated-human PBMC when cultured with conditioned media of ADKP cancer cells subjected to PDT. Furthermore, to evaluate in vivo the impact of this new PS, we analyzed the tumor growth in a humanized SCID mice model of pancreatic cancer. Four conditions were tested: Untreated, mice (nontreated), mice with PS (PS2), mice subjected to illumination (Light only), and mice subjected to illumination in the presence of PS (PDT). We noticed that the mice subjected to PDT presented a strong decrease in the growth of the tumor over time after illumination. Our investigations have not only suggested that PS2-PDT is an effective therapy in the treatment of PDAC but also that it activates the immune system and could be considered as a real adjuvant for anti-cancer vaccination. Thus, this new study provides new treatment options for patients in a therapeutic impasse and will provide a new arsenal in the fight against PDAC.


Pancreas ◽  
2013 ◽  
Vol 42 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Akinori Asagi ◽  
Koji Ohta ◽  
Junichirou Nasu ◽  
Minoru Tanada ◽  
Seijin Nadano ◽  
...  

2011 ◽  
Vol 43 (7) ◽  
pp. 565-574 ◽  
Author(s):  
Jonathan P. Celli ◽  
Nicolas Solban ◽  
Alvin Liang ◽  
Stephen P. Pereira ◽  
Tayyaba Hasan

2005 ◽  
Vol 185 (5) ◽  
pp. 1193-1200 ◽  
Author(s):  
Kenji Takeshima ◽  
Takashi Kumada ◽  
Hidenori Toyoda ◽  
Seiki Kiriyama ◽  
Makoto Tanikawa ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Michael Hocke ◽  
Christoph F. Dietrich

Discriminating between focal chronic pancreatitis and pancreatic cancer is always a challenge in clinical medicine. Contrast-enhanced endoscopic ultrasound using Doppler techniques can uniquely reveal different vascularisation patterns in pancreatic tissue alterated by chronic inflammatory processes and even allows a discrimination from pancreatic cancer. This paper will describe the basics of contrast-enhanced high mechanical index endoscopic ultrasound (CEHMI EUS) and contrast enhanced low mechanical index endoscopic ultrasound (CELMI EUS) and explain the pathophysiological differences of the vascularisation of chronic pancreatitis and pancreatic carcinoma. Furthermore it will discuss how to use these techniques in daily clinical practice.


Sign in / Sign up

Export Citation Format

Share Document