Chapter 1. Identification of Cellular Protein–Protein Interactions

Author(s):  
Caroline Benz ◽  
Eszter Kassa ◽  
Elias Tjärnhage ◽  
Sara Bergström Lind ◽  
Ylva Ivarsson
2021 ◽  
Vol 17 (5) ◽  
pp. e1008988
Author(s):  
Nikolina ŠoŠtarić ◽  
Vera van Noort

Post-translational modifications (PTMs) play a vital, yet often overlooked role in the living cells through modulation of protein properties, such as localization and affinity towards their interactors, thereby enabling quick adaptation to changing environmental conditions. We have previously benchmarked a computational framework for the prediction of PTMs’ effects on the stability of protein-protein interactions, which has molecular dynamics simulations followed by free energy calculations at its core. In the present work, we apply this framework to publicly available data on Saccharomyces cerevisiae protein structures and PTM sites, identified in both normal and stress conditions. We predict proteome-wide effects of acetylations and phosphorylations on protein-protein interactions and find that acetylations more frequently have locally stabilizing roles in protein interactions, while the opposite is true for phosphorylations. However, the overall impact of PTMs on protein-protein interactions is more complex than a simple sum of local changes caused by the introduction of PTMs and adds to our understanding of PTM cross-talk. We further use the obtained data to calculate the conformational changes brought about by PTMs. Finally, conservation of the analyzed PTM residues in orthologues shows that some predictions for yeast proteins will be mirrored to other organisms, including human. This work, therefore, contributes to our overall understanding of the modulation of the cellular protein interaction networks in yeast and beyond.


2019 ◽  
Author(s):  
Christina K. Kim ◽  
Kelvin F. Cho ◽  
Min Woo Kim ◽  
Alice Y. Ting

Technologies that convert transient protein-protein interactions (PPIs) into stable expression of a reporter gene are useful for genetic selections, high-throughput screening, and multiplexing with omics technologies. We previously reported SPARK (Kim et al., 2017), a transcription factor that is activated by the coincidence of blue light and a PPI. Here, we report an improved, second-generation SPARK2 that incorporates a luciferase moiety to control the light-sensitive LOV domain. SPARK2 can be temporally gated by either external light or addition of a small-molecule luciferin, which causes luciferase to open LOV via proximity-dependent BRET. Furthermore, the nested “AND” gate design of SPARK2—in which both protease recruitment to the membrane-anchored transcription factor and LOV domain opening are regulated by the PPI of interest—yields a lower-background system and improved PPI specificity. We apply SPARK2 to high-throughput screening for GPCR agonists and for the detection of trans-cellular contacts, all with versatile transcriptional readout.


2019 ◽  
Author(s):  
Ageo Miccoli ◽  
Binar A. Dhiani ◽  
Peter J. Thornton ◽  
Olivia A. Lambourne ◽  
Edward James ◽  
...  

Many cellular protein-protein interactions (PPIs) are mediated by phosphoserine. The specific targeting of these PPIs by phosphoserine-containing small molecules has been scarce due to the dephosphorylation of phosphoserine and its charged nature at physiological pH, which hinders its uptake into cells. To address these issues, we herein report the masking of the phosphate group of phosphoserine with biocleavable aryloxy triester phosphoramidate groups. A combination of <i>in vitro</i> enzymatic assays and <i>in silico</i> studies, using carboxypeptidase Y and Hint-1 respectively, showed that the phosphate masking groups are metabolized to release phosphoserine. To probe the applicability of this phosphoserine masking approach, it was applied to a phosphoserine-containing inhibitor of 14-3-3 dimerization, and this generated molecules with improved pharmacological activity in cells compared to their unmasked phosphoserine-containing parent compound. Collectively, the data showcases the masking of phosphoserine with biocleavable aryloxy triester phosphoramidate masking groups as an efficient intracellular delivery system for phosphoserine-containing molecules.


2013 ◽  
Vol 394 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Sabine Zachgo ◽  
Guy T. Hanke ◽  
Renate Scheibe

Abstract This review describes how transient protein-protein interactions can contribute to direct information flow between subsequent steps of metabolic and signaling pathways, focusing on the redox perspective. Posttranslational modifications are often the basis for the dynamic nature of such macromolecular aggregates, named microcompartments. The high cellular protein concentration promotes these interactions that are prone to disappear upon the extraction of proteins from cells. Changes of signaling molecules, such as metabolites, effectors or phytohormones, or the redox state in the cellular microenvironment, can modulate them. The signaling network can, therefore, respond in a very flexible and appropriate manner, such that metabolism, stress responses, and developmental steps are integrated by multiple and changing contacts between functional modules. This allows plants to survive and persist by continuously and flexibly adapting to a challenging or even adverse environment.


2020 ◽  
Vol 117 (11) ◽  
pp. 6121-6128 ◽  
Author(s):  
Pengwei Zhang ◽  
Ruben Moreno ◽  
Paul F. Lambert ◽  
Daniel DiMaio

Virus replication requires critical interactions between viral proteins and cellular proteins that mediate many aspects of infection, including the transport of viral genomes to the site of replication. In human papillomavirus (HPV) infection, the cellular protein complex known as retromer binds to the L2 capsid protein and sorts incoming virions into the retrograde transport pathway for trafficking to the nucleus. Here, we show that short synthetic peptides containing the HPV16 L2 retromer-binding site and a cell-penetrating sequence enter cells, sequester retromer from the incoming HPV pseudovirus, and inhibit HPV exit from the endosome, resulting in loss of viral components from cells and in a profound, dose-dependent block to infection. The peptide also inhibits cervicovaginal HPV16 pseudovirus infection in a mouse model. These results confirm the retromer-mediated model of retrograde HPV entry and validate intracellular virus trafficking as an antiviral target. More generally, inhibiting virus replication with agents that can enter cells and disrupt essential protein-protein interactions may be applicable in broad outline to many viruses.


2021 ◽  
Vol 9 (7) ◽  
pp. 1509
Author(s):  
Ilena Benoit ◽  
Signy Brownell ◽  
Renée N. Douville

Integrase (IN) enzymes are found in all retroviruses and are crucial in the retroviral integration process. Many studies have revealed how exogenous IN enzymes, such as the human immunodeficiency virus (HIV) IN, contribute to altered cellular function. However, the same consideration has not been given to viral IN originating from symbionts within our own DNA. Endogenous retrovirus-K (ERVK) is pathologically associated with neurological and inflammatory diseases along with several cancers. The ERVK IN interactome is unknown, and the question of how conserved the ERVK IN protein–protein interaction motifs are as compared to other retroviral integrases is addressed in this paper. The ERVK IN protein sequence was analyzed using the Eukaryotic Linear Motif (ELM) database, and the results are compared to ELMs of other betaretroviral INs and similar eukaryotic INs. A list of putative ERVK IN cellular protein interactors was curated from the ELM list and submitted for STRING analysis to generate an ERVK IN interactome. KEGG analysis was used to identify key pathways potentially influenced by ERVK IN. It was determined that the ERVK IN potentially interacts with cellular proteins involved in the DNA damage response (DDR), cell cycle, immunity, inflammation, cell signaling, selective autophagy, and intracellular trafficking. The most prominent pathway identified was viral carcinogenesis, in addition to select cancers, neurological diseases, and diabetic complications. This potentiates the role of ERVK IN in these pathologies via protein–protein interactions facilitating alterations in key disease pathways.


Author(s):  
Yufei Xiang ◽  
Zhe Sang ◽  
Lirane Bitton ◽  
Jianquan Xu ◽  
Yang Liu ◽  
...  

SummaryThe humoral immune response is essential for the survival of mammals. However, we still lack a systematic understanding of the specific serologic antibody repertoire in response to an antigen. We developed a proteomic strategy to survey, at an unprecedented scale, the landscapes of antigen-engaged, serum-circulating repertoires of camelid heavy-chain antibodies (hcAbs). The sensitivity and robustness of this technology were validated using three antigens spanning orders of magnitude in immune response; thousands of divergent, high-affinity hcAb families were confidently identified and quantified. Using high-throughput structural modeling, cross-linking mass spectrometry, mutagenesis, and deep learning, we mapped and analyzed the epitopes of > 100,000 antigen-antibody complexes. Our results revealed a surprising diversity of high-affinity hcAbs for specific antigen binding on a variety of dominant epitopes. hcAbs perfect both shape and charge complementarity to target challenging antigens specifically; they can rapidly evolve to recognize a conserved, promiscuous cellular protein interaction interface, unraveling the convergent force that drives protein-protein interactions.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Christina K Kim ◽  
Kelvin F Cho ◽  
Min Woo Kim ◽  
Alice Y Ting

Technologies that convert transient protein-protein interactions (PPIs) into stable expression of a reporter gene are useful for genetic selections, high-throughput screening, and multiplexing with omics technologies. We previously reported SPARK (Kim et al., 2017), a transcription factor that is activated by the coincidence of blue light and a PPI. Here, we report an improved, second-generation SPARK2 that incorporates a luciferase moiety to control the light-sensitive LOV domain. SPARK2 can be temporally gated by either external light or addition of a small-molecule luciferin, which causes luciferase to open LOV via proximity-dependent BRET. Furthermore, the nested ‘AND’ gate design of SPARK2—in which both protease recruitment to the membrane-anchored transcription factor and LOV domain opening are regulated by the PPI of interest—yields a lower-background system and improved PPI specificity. We apply SPARK2 to high-throughput screening for GPCR agonists and for the detection of trans-cellular contacts, all with versatile transcriptional readout.


Sign in / Sign up

Export Citation Format

Share Document