Functionalization of SiO2 Nanoparticles and Their Superhydrophobic Surface Coating

Author(s):  
Y. H. Sehlleier ◽  
A. Abdali ◽  
T. Hülser ◽  
H. Wiggers ◽  
C. Schulz
2020 ◽  
Vol 82 (12) ◽  
pp. 2948-2961
Author(s):  
Jing Yi Chin ◽  
Guang Hui Teoh ◽  
Abdul Latif Ahmad ◽  
Siew Chun Low

Abstract Membrane distillation (MD) is an advantageous separation process compared with pressure-driven technologies and was subsequently introduced to treat aquaculture wastewater. Harnessing a superhydrophobic membrane in an MD process is of extreme importance to prevent membrane wetting. In this work, the electrospun polypropylene (PP) membrane was surface modified by depositing an additional coating of PP via the solvent-exchange method, thereby improving the membrane's superhydrophobicity. Layer-by-layer deposition of PP caused the formation of uniform polymer spherulites on the membrane surface, which levelled up the membrane's surface roughness. A superhydrophobic surface was achieved by applying a single-layered PP coating, with static water contact angle of 152.2° and sliding angle of 12.5°. While all membranes achieved almost perfect salt rejection (up to 99.99%), the MD permeate flux improved by 30%, average of 13.0 kg/m2h, when the single-layered PP-coated membrane was used to treat the high salinity water in both 2 and 60 hr MD processes. Further layers of coating resulted in larger size of PP spherulites with higher sliding angle, followed by lowered flux in MD. The evenness of the surface coating and the size of the aggregate PP spherulites (nano-scaled) are two predominant factors contributing to the superhydrophobicity character of a membrane.


1987 ◽  
Vol 58 (04) ◽  
pp. 1064-1067 ◽  
Author(s):  
K Kodama ◽  
B Pasche ◽  
P Olsson ◽  
J Swedenborg ◽  
L Adolfsson ◽  
...  

SummaryThe mode of F Xa inhibition was investigated on a thromboresistant surface with end-point attached partially depoly-merized heparin of an approximate molecular weight of 8000. Affinity chromatography revealed that one fourth of the heparin used in surface coating had high affinity for antithrombin III (AT). The heparin surface adsorbed AT from both human plasma and solutions of purified AT. By increasing the ionic strength in the AT solution the existence of high and low affinity sites could be shown. The uptake of AT was measured and the density of available high and low affinity sites was found to be in the range of 5 HTid 11 pic.omoles/cmf, respectively Thus the estimated density of biologically active high and low ailmity heparm respectively would be 40 and 90 ng/cm2 The heparin coating did not take up or exert F Xa inhibition by itself. With AT adsorbed on both high and low affinity heparin the surface had the capacity to inhibit several consecutive aliquots of F Xa exposed to the surface. When mainly high affinity sites were saturated with AT the inhibition capacity was considerably lower. Tt was demonstrated that the density of AT on both high and low affinity heparin determines the F Xa inhibition capacity whereas the amount of AT on high affinity sites limits the rate of the reaction. This implies that during the inhibition of F Xa there is a continuous surface-diffusion of AT from sites of a lower class to the high affinity sites where the F Xa/AT complex is formed and leaves the surface. The ability of the immobilized heparin to catalyze inhibition of F Xa is likely to be an important component for the thromboresistant properties of a heparin coating with non-compromized AT binding sequences.


2004 ◽  
Vol 11 (2) ◽  
pp. 133-150 ◽  
Author(s):  
M. B. Dizon ◽  
J. Yang ◽  
F. B. Cheung ◽  
J. L. Rempe ◽  
K. Y. Suh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document