Analysis of Ferrosilicon and Silicon Carbide by an X-ray Fluorescence Fusion Method—An X-ray Diffraction Investigation of the Preliminary Oxidation

1997 ◽  
Vol 34 (6) ◽  
pp. 165-169 ◽  
Author(s):  
Rosalind R. Schwarz ◽  
David McCallum
1991 ◽  
Vol 6 (12) ◽  
pp. 2723-2734 ◽  
Author(s):  
Gary M. Renlund ◽  
Svante Prochazka ◽  
Robert H. Doremus

Silicon oxycarbide glass is formed by the pyrolysis of silicone resins and contains only silicon, oxygen, and carbon. The glass remains amorphous in x-ray diffraction to 1400 °C and shows no features in transmission electron micrographs (TEM) after heating to this temperature. After heating at higher temperature (1500–1650 °C) silicon carbide lines develop in x-ray diffraction, and fine crystalline regions of silicon carbide and graphite are found in TEM and electron diffraction. XPS shows that silicon-oxygen bonds in the glass are similar to those in amorphous and crystalline silicates; some silicons are bonded to both oxygen and carbon. Carbon is bonded to either silicon or carbon; there are no carbon-oxygen bonds in the glass. Infrared spectra are consistent with these conclusions and show silicon-oxygen and silicon-carbon vibrations, but none from carbon-oxygen bonds. 29Si-NMR shows evidence for four different bonding groups around silicon. The silicon oxycarbide structure deduced from these results is a random network of silicon-oxygen tetrahedra, with some silicons bonded to one or two carbons substituted for oxygen; these carbons are in turn tetrahedrally bonded to other silicon atoms. There are very small regions of carbon-carbon bonds only, which are not bonded in the network. This “free” carbon colors the glass black. When the glass is heated above 1400 °C this network composite rearranges in tiny regions to graphite and silicon carbide crystals. The density, coefficient of thermal expansion, hardness, elastic modulus, index of refraction, and viscosity of the silicon oxycarbide glasses are all somewhat higher than these properties in vitreous silica, probably because the silicon-carbide bonds in the network of the oxycarbide lead to a tighter, more closely packed structure. The oxycarbide glass is highly stable to temperatures up to 1600 °C and higher, because oxygen and water diffuse slowly in it.


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


2022 ◽  
Vol 905 ◽  
pp. 333-337
Author(s):  
Sheng Fu Yang ◽  
Chun Liang Chen ◽  
Kuang Li Chien ◽  
Chih Chao Liang ◽  
Hsien Ho Chuo

In the period of silicon and silicon carbide wafer slicing process, the abrasive oil, silicon carbide (SiC), silicon and trace elements e.g., iron, zinc, copper, and nickel is generated as an oily mixture of insoluble matter. The SiC is the main component (>70%) in the abrasive slurry and the extraction of SiC from the slurry can eliminate the risk of illegal waste disposal and reduce the cost for the enterprises. In this study, a chemical separation process is applied to remove silicon particles and SiC can be extracted from the slurry mixtures. The X-ray diffraction analysis revealed that recycled material is moissanite with two crystalline polymorphs. The 3C and 6H X-ray powder pattern is observed and the cubic and hexagonal crystalline structure is revealed. The particle size distribution analysis showed that median value of purified SiC powder material is 9.8 μm.


2018 ◽  
Vol 769 ◽  
pp. 114-119 ◽  
Author(s):  
Artur A. Sivkov ◽  
Artur Nassyrbayev ◽  
Maksim Gukov

In this work, the powder of nanoscale cubic SiC was obtained by the plasmodynamic synthesis in a coaxial magnetoplasma accelerator (CMPA) with a graphite central electrode and an accelerator channel. The synthesis method allows obtaining a product with a high content of nanoscale cubic silicon carbide. The work is aimed to study the influence of the precursor’s ratio on the product. The synthesized products were analyzed by X-ray diffraction and transmission electron microscopy.


2010 ◽  
Vol 152-153 ◽  
pp. 1683-1686
Author(s):  
Qing Wang ◽  
Ya Hui Zhang

Biomorphic silicon carbide (bioSiC) was prepared by high temperature pyrolysis and sol-gel and carbothermal reduction processing at 1600 oC. The morphology and microstructure of carbon-silica composites and purified bioSiC samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the bioSiC mainly consists of cubic ß-SiC, and principally replicates the shape and microstructure of the carbon template.


2001 ◽  
Vol 353-356 ◽  
pp. 283-286 ◽  
Author(s):  
Etienne Pernot ◽  
Michel Mermoux ◽  
J. Kreisel ◽  
O. Chaix-Pluchery ◽  
Petra Pernot-Rejmánková ◽  
...  

2006 ◽  
Vol 100 (9) ◽  
pp. 093510 ◽  
Author(s):  
M. A. Mastro ◽  
M. Fatemi ◽  
D. K. Gaskill ◽  
K.-K. Lew ◽  
B. L. Van Mil ◽  
...  

1989 ◽  
Vol 157 ◽  
Author(s):  
T. R. Jervis ◽  
J-P. Hirvonen ◽  
M. Nastasi ◽  
M. R. Cohen

ABSTRACTWe have used excimer laser surface processing to melt and mix single Ti layers into the surface of polycrystalline SiC substrates. The mixing of Ti into the surface is very rapid and efficient. Examination of Rutherford backscattering (RBS) data for different mixing conditions shows the formation of a preferred composition at the Ti-substrate interface which propagates from the interface with further mixing. Reconstruction of the RBS spectrum indicates that the composition of the layer is Ti45C37Si18. X-ray diffraction demonstrates the formation of Ti suicides and carbides in the surface region. Profiling of C in both mixed and uncoated samples by 6 MeV He+ scattering demonstrates that laser processing of the SiC does not cause major changes in the stoichiometry of the substrate material.


Sign in / Sign up

Export Citation Format

Share Document