Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase

2012 ◽  
Vol 5 (11) ◽  
pp. 9574 ◽  
Author(s):  
Claire R. Shen ◽  
James C. Liao
2018 ◽  
Vol 179 (1) ◽  
pp. 184-194 ◽  
Author(s):  
Fang Huang ◽  
Olga Vasieva ◽  
Yaqi Sun ◽  
Matthew Faulkner ◽  
Gregory F. Dykes ◽  
...  

2020 ◽  
Vol 21 (4) ◽  
pp. 1345
Author(s):  
Qianxin Huang ◽  
Jinyang Lv ◽  
Yanyan Sun ◽  
Hongmei Wang ◽  
Yuan Guo ◽  
...  

The use of herbicides is an effective and economic way to control weeds, but their availability for rapeseed is limited due to the shortage of herbicide-resistant cultivars in China. The single-point mutation in the acetohydroxyacid synthase (AHAS) gene can lead to AHAS-inhibiting herbicide resistance. In this study, the inheritance and molecular characterization of the tribenuron-methyl (TBM)-resistant rapeseed (Brassica napus L.) mutant, K5, are performed. Results indicated that TBM-resistance of K5 was controlled by one dominant allele at a single nuclear gene locus. The novel substitution of cytosine with thymine at position 544 in BnAHAS1 was identified in K5, leading to the alteration of proline with serine at position 182 in BnAHAS1. The TBM-resistance of K5 was approximately 100 times that of its wild-type ZS9, and K5 also showed cross-resistance to bensufuron-methyl and monosulfuron-ester sodium. The BnAHAS1544T transgenic Arabidopsis exhibited higher TBM-resistance than that of its wild-type, which confirmed that BnAHAS1544T was responsible for the herbicide resistance of K5. Simultaneously, an allele-specific marker was developed to quickly distinguish the heterozygous and homozygous mutated alleles BnAHAS1544T. In addition, a method for the fast screening of TBM-resistant plants at the cotyledon stage was developed. Our research identified and molecularly characterized one novel mutative AHAS allele in B. napus and laid a foundation for developing herbicide-resistant rapeseed cultivars.


2019 ◽  
Vol 142 (2) ◽  
pp. 203-210 ◽  
Author(s):  
Kenya Tanaka ◽  
Masahito Ishikawa ◽  
Masahiro Kaneko ◽  
Kazuhide Kamiya ◽  
Souichiro Kato ◽  
...  

2008 ◽  
Vol 190 (19) ◽  
pp. 6318-6329 ◽  
Author(s):  
Maria Billini ◽  
Kostas Stamatakis ◽  
Vicky Sophianopoulou

ABSTRACT Synechococcus elongatus strain PCC 7942 is an alkaliphilic cyanobacterium that tolerates a relatively high salt concentration as a freshwater microorganism. Its genome sequence revealed seven genes, nha1 to nha7 (syn_pcc79420811, syn_pcc79421264, syn_pcc7942359, syn_pcc79420546, syn_pcc79420307, syn_pcc79422394, and syn_pcc79422186), and the deduced amino acid sequences encoded by these genes are similar to those of Na+/H+ antiporters. The present work focused on molecular and functional characterization of these nha genes encoding Na+/H+ antiporters. Our results show that of the nha genes expressed in Escherichia coli, only nha3 complemented the deficient Na+/H+ antiporter activity of the Na+-sensitive TO114 recipient strain. Moreover, two of the cyanobacterial strains with separate disruptions in the nha genes (Δnha1, Δnha2, Δnha3, Δnha4, Δnha5, and Δnha7) had a phenotype different from that of the wild type. In particular, ΔnhA3 cells showed a high-salt- and alkaline-pH-sensitive phenotype, while Δnha2 cells showed low salt and alkaline pH sensitivity. Finally, the transcriptional profile of the nha1 to nha7 genes, monitored using the real-time PCR technique, revealed that the nha6 gene is upregulated and the nha1 gene is downregulated under certain environmental conditions.


2012 ◽  
Vol 109 (9) ◽  
pp. 2340-2348 ◽  
Author(s):  
Omer Grundman ◽  
Inna Khozin-Goldberg ◽  
Dina Raveh ◽  
Zvi Cohen ◽  
Maria Vyazmensky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document