Role of three-body recombination for charge reduction in MALDI process

The Analyst ◽  
2013 ◽  
Vol 138 (10) ◽  
pp. 2964 ◽  
Author(s):  
Yiming Lin ◽  
Zhibin Yin ◽  
Xiaohua Wang ◽  
Weifeng Li ◽  
Wei Hang

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
T. Secker ◽  
J.-L. Li ◽  
P. M. A. Mestrom ◽  
S. J. J. M. F. Kokkelmans




1970 ◽  
Vol 8 (11) ◽  
pp. 903-906 ◽  
Author(s):  
E.G. Brovman ◽  
G. Solt


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fuyang Zhou ◽  
Yizhi Qu ◽  
Junwen Gao ◽  
Yulong Ma ◽  
Yong Wu ◽  
...  

AbstractAn ion embedded in warm/hot dense plasmas will greatly alter its microscopic structure and dynamics, as well as the macroscopic radiation transport properties of the plasmas, due to complicated many-body interactions with surrounding particles. Accurate theoretically modeling of such kind of quantum many-body interactions is essential but very challenging. In this work, we propose an atomic-state-dependent screening model for treating the plasmas with a wide range of temperatures and densities, in which the contributions of three-body recombination processes are included. We show that the electron distributions around an ion are strongly correlated with the ionic state studied due to the contributions of three-body recombination processes. The feasibility and validation of the proposed model are demonstrated by reproducing the experimental result of the line-shift of hot-dense plasmas as well as the classical molecular dynamic simulations of moderately coupled ultra-cold neutral plasmas. Our work opens a promising way to treat the screening effect of hot and warm dense plasma, which is a bottleneck of those extensive studies in high-energy-density physics, such as atomic processes in plasma, plasma spectra and radiation transport properties, among others.



1993 ◽  
Vol 07 (29n30) ◽  
pp. 1883-1895 ◽  
Author(s):  
A. MAITI ◽  
C.J. BRABEC ◽  
J. BERNHOLC

Scaling arguments are used to show that above a critical size of several thousand atoms, there is a stability crossover from single to multilayer cages. Conjugate gradient minimization using a classical three-body interatomic potential, as well as tight-binding electronic structure calculations yield ground-state configurations for large fullerene shells that are polyhedral with clearly faceted geometry. The structure, energetics and configurational entropy associated with low-energy defects are calculated and the number of defects estimated as a function of temperature. The role of these thermally generated defects on the shape of large fullerenes is investigated in order to explain the nearly spherical shapes of the newly discovered carbon “onions”.





2018 ◽  
Vol 2018 (11) ◽  
Author(s):  
Eric Braaten ◽  
Daekyoung Kang ◽  
Ranjan Laha


2012 ◽  
Vol 392 (1) ◽  
pp. 149-159 ◽  
Author(s):  
Dmitrii B. Kabanov ◽  
Lev Yu. Rusin




2017 ◽  
Author(s):  
D.A. Turner ◽  
L. Alonso-Crisostomo ◽  
M. Girgin ◽  
P. Baillie-Johnson ◽  
C. R. Glodowski ◽  
...  

AbstractEstablishment of the three body axes is a critical step during animal development. In mammals, genetic studies have shown that a combination of precisely deployed signals from extraembryonic tissues position the anteroposterior axis (AP) within the embryo and lead to the emergence of the dorsoventral (DV) and left-right (LR) axes. We have used Gastruloids, embryonic organoids, as a model system to understand this process and find that they are able to develop AP, DV and LR axes as well as to undergo axial elongation in a manner that mirror embryos. The Gastruloids can be grown for 160 hours and form derivatives from ectoderm, mesoderm and endoderm. We focus on the AP axis and show that in the Gastruloids this axis is registered in the expression of T/Bra at one pole that corresponds to the tip of the elongation. We find that localisation of T/Bra expression depends on the combined activities of Wnt/β-Catenin and Nodal/Smad2,3 signalling, and that BMP signalling is dispensable for this process. Furthermore, AP axis specification occurs in the absence of both extraembryonic tissues and of localised sources of signalling. Our experiments show that Nodal, together with Wnt/β-Catenin signalling, is essential for the expression of T/Bra but that Wnt signalling has a separable activity in the elongation of the axis. The results lead us to suggest that, in the embryo, the role of the extraembryonic tissues might not be to induce the axes but to bias an intrinsic ability of the embryo to break its initial symmetry and organise its axes.One sentence summaryCulture of aggregates of defined number of Embryonic Stem cells leads to self-organised embryo-like structures which, in the absence of localised signalling from extra embryonic tissues and under the autonomous influence of Wnt and Nodal signalling, develop the three main axes of the body.



Sign in / Sign up

Export Citation Format

Share Document