A sequential-injection reversed-phase chromatography method for fluorimetric determination of glyphosate and aminomethylphosphonic acid

2014 ◽  
Vol 6 (2) ◽  
pp. 490-496 ◽  
Author(s):  
Sandro de Miranda Colombo ◽  
Jorge Cesar Masini
2020 ◽  
Vol 20 (13) ◽  
pp. 1053-1059
Author(s):  
Mahmoud M. Sebaiy ◽  
Noha I. Ziedan

Background: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Vita Giaccone ◽  
Giuseppe Polizzotto ◽  
Andrea Macaluso ◽  
Gaetano Cammilleri ◽  
Vincenzo Ferrantelli

The aim of our present work was the development of a rapid high-performance liquid chromatography method with electrospray ionization and tandem mass spectrometry detection (LC-ESI-MS/MS) for the determination of several corticosteroids in cosmetic products. Corticosteroids are suspected to be illegally added in cosmetic preparations in order to enhance the curative effect against some skin diseases. Sample preparation step consists in a single extraction with acetonitrile followed by centrifugation and filtration. The compounds were separated by reversed-phase chromatography with water and acetonitrile (both with 0.1% formic acid) gradient elution and detected by ESI-MS positive and negative ionization mode. The method was validated at the validation level of 0.1 mg kg−1. Linearity was studied in the 5–250 μg L−1 range and linear coefficients (r2) were all over 0.99. The accuracy and precision of the method were satisfactory. The LOD ranged from 0.085 to 0.109 mg kg−1 and the LOQ from 0.102 to 0.121 mg kg−1. Mean recoveries for all the analytes were within the range 91.9–99.2%. The developed method is sensitive and useful for detection, quantification, and confirmation of these corticosteroids in cosmetic preparations and can be applied in the analysis of the suspected samples under investigation.


2014 ◽  
Vol 6 (16) ◽  
pp. 6560-6564 ◽  
Author(s):  
Wuxiang Zhang ◽  
Yicong Su ◽  
Jiangu Shi ◽  
Maosheng Zhang ◽  
Bide Wu ◽  
...  

In this paper, a high performance liquid chromatography technique is established for quantification of paraquat in blood.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (11) ◽  
pp. 46-50
Author(s):  
Z. G Khan ◽  
◽  
S. S. Patil ◽  
P. K. Deshmukh ◽  
P. O. Patil

Novel, isocratic reversed phase high performance liquid chromatography method was developed and validated for the determination of enzalutamide (EZA) in bulk drug and pharmaceutical formulation. Efficient separation was achieved on PrincetonSPHER C18 100A, 5μ (250×4.6 mm) under the isocratic mode of elution using acetonitrile: water (80:20) % V/V as a mobile phase pumped in to the column at flow rate 1.0 mL/min. The effluent was monitored at 237.0 nm using UV detector. EZA was eluted in the given mobile phase at retention time (tR) of 3.2 minutes. The standard calibration curve was linear over the concentration range 10 - 60 μg/mL with correlation coefficient 0.997. The method was validated for accuracy, precision, sensitivity, robustness, ruggedness and all the resulting data treated statistically. The system suitability parameters like retention time, theoretical plates, tailing factor, capacity factor were found within the limit.


2011 ◽  
Vol 140 ◽  
pp. 296-301 ◽  
Author(s):  
Cai Mei Wu ◽  
Hong Min Yuan ◽  
Gang Jia ◽  
Zhi Sheng Wang ◽  
Xiu Qun Wu

A reversed high performance liquid chromatography method was developed for the quantitative determination of mimosine and 2,3-DHP in leaves ofLeucaena Leucocephala. Mimosine and 2,3DHP were extracted using 0.1N HCl.The chromatograph conditions were investigated and optimized. The optimal HPLC conditions as follows: Agilent HC-C18 column (4.6×150mm,5μm) was used at 30°C. The method used a variable wavelength UV detector at 280nm, the mobile phase consisted of 0.2 % (w/v) orthophosphoric acid and methanol, the gradient elution was adopted. The injection volume was 10μL. The linearity is favorable in the range of 1.0 to 50μg mL-1with a correlation coefficient of 0.99998 for mimosine and 0.99902 for 2,3DHP. Under the optimal conditions, the method limit of detection (LOD) of mimosine and 2,3DHP were 0.40mg/kg and 0.55mg/kg respectively. The recovery of mimosine was 87.00-94.70% with the RSD (n=5) of 2.75-3.81% in the spiked levels 0,1, 5, 20mg/g. At the same time, the recovery of 2,3DHP was 88-95.4% with the RSD (n=5) of 2.24-4.90%. The method was found to be simple, sensitive, fast and accurate, and has been applied successfully for the quantitative detection of mimosine and 2,3-DHP in leaves ofLeucaena Leucocephala, plasma and excretion of ruminant.


Sign in / Sign up

Export Citation Format

Share Document