scholarly journals Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions

2014 ◽  
Vol 16 (29) ◽  
pp. 15278-15288 ◽  
Author(s):  
Rebecca K. Blundell ◽  
Peter Licence

The impact of changing the cationic core, from nitrogen to phosphorus upon the electronic environment of the ionic liquid is investigated with XPS.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2325
Author(s):  
Ronan Invernizzi ◽  
Liliane Guerlou-Demourgues ◽  
François Weill ◽  
Alexia Lemoine ◽  
Marie-Anne Dourges ◽  
...  

Nanostructuration is one of the most promising strategies to develop performant electrode materials for energy storage devices, such as hybrid supercapacitors. In this work, we studied the influence of precipitation medium and the use of a series of 1-alkyl-3-methylimidazolium bromide ionic liquids for the nanostructuration of β(III) cobalt oxyhydroxides. Then, the effect of the nanostructuration and the impact of the different ionic liquids used during synthesis were investigated in terms of energy storage performances. First, we demonstrated that forward precipitation, in a cobalt-rich medium, leads to smaller particles with higher specific surface areas (SSA) and an enhanced mesoporosity. Introduction of ionic liquids (ILs) in the precipitation medium further strongly increased the specific surface area and the mesoporosity to achieve well-nanostructured materials with a very high SSA of 265 m2/g and porosity of 0.43 cm3/g. Additionally, we showed that ILs used as surfactant and template also functionalize the nanomaterial surface, leading to a beneficial synergy between the highly ionic conductive IL and the cobalt oxyhydroxide, which lowers the resistance charge transfer and improves the specific capacity. The nature of the ionic liquid had an important influence on the final electrochemical properties and the best performances were reached with the ionic liquid containing the longest alkyl chain.


2020 ◽  
Vol 22 (43) ◽  
pp. 25255-25263
Author(s):  
Sandeep Kumar ◽  
Navleen Kaur ◽  
Venus Singh Mithu

The impact of increasing concentration of imidazolium-based ionic liquids ([CnMIM]+[Br]−) on the structural integrity of large unilamellar vesicles (LUVs) made of pure phosphatidylcholine (PC) and phosphatidylglycerol (PG) lipids.


2014 ◽  
Vol 16 (39) ◽  
pp. 21340-21348 ◽  
Author(s):  
Catarina M. S. S. Neves ◽  
Kiki A. Kurnia ◽  
Karina Shimizu ◽  
Isabel M. Marrucho ◽  
Luís Paulo N. Rebelo ◽  
...  

The presence of fluorinated alkyl chains in ionic liquids is quite relevant regarding their thermophysical properties and aqueous phase behaviour.


2020 ◽  
Vol 22 (30) ◽  
pp. 17394-17400
Author(s):  
Shuang Men ◽  
Yujuan Jin ◽  
Peter Licence

XPS is used to probe the impact of the N3-substituted alkyl chain on the electronic environment of the cation and the anion by comparing two types of imidazolium cations, 1-alkyl-3-butylimidazolium and 1-alkyl-3-methylimidazolium.


2012 ◽  
Vol 65 (11) ◽  
pp. 1502 ◽  
Author(s):  
Natalie Debeljuh ◽  
Swapna Varghese ◽  
Colin J. Barrow ◽  
Nolene Byrne

We report on the impact of changes in the protic ionic liquid (pIL) cation on the fibrilisation kinetics and the conversion of the Aβ 16–22 from monomers to amyloid fibrils. When we compare the use of primary, secondary, and tertiary amines we find that the primary amine results in the greatest conversion into amyloid fibrils. We show that the pIL is directly interacting with the peptide and this likely drives the difference in conversion and kinetics observed.


2018 ◽  
Vol 10 (3) ◽  
pp. 825-840 ◽  
Author(s):  
Veronika Zeindlhofer ◽  
Christian Schröder

Abstract Based on their tunable properties, ionic liquids attracted significant interest to replace conventional, organic solvents in biomolecular applications. Following a Gartner cycle, the expectations on this new class of solvents dropped after the initial hype due to the high viscosity, hydrolysis, and toxicity problems as well as their high cost. Since not all possible combinations of cations and anions can be tested experimentally, fundamental knowledge on the interaction of the ionic liquid ions with water and with biomolecules is mandatory to optimize the solvation behavior, the biodegradability, and the costs of the ionic liquid. Here, we report on current computational approaches to characterize the impact of the ionic liquid ions on the structure and dynamics of the biomolecule and its solvation layer to explore the full potential of ionic liquids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Rakowska ◽  
Magdalena Węgrzyn ◽  
Ewa Rudnik

AbstractFor many years, there has been a growing interest in technologies enabling the replacement of conventional polymer composites with new materials made from renewable raw materials. It is important to assess the behaviour of biocomposites in various environments, including humid conditions. Recently, ionic liquids have been studied as potential modificators of polymers properties, especially flame retardants. In previous study the impact of ionic liquids on thermal and mechanical properties of biocomposites was assessed. In this study the influence of ionic liquids on moisture absorption properties of biocomposites at different relative humidities (RH) was assessed. The biocomposites were built from polyethylene from renewable resources reinforced with flax or hemp fibers. The effect of the addition of 0.5, 1.0, 2.5 and 5 wt.% phosphonium ionic liquids on the moisture absorption properties of biopolyethylene biocomposite reinforced with natural fibers were tested. Mixtures of biopolyethylene, natural fibers and ionic liquid were calendered at 180 °C and then were compounded by injection moulding. The prepared samples were then characterized for their moisture uptake at 30%, 50% and 100% RH. Moisture absorption by biocomposites depended on the structure of the ionic liquid and the type of fiber. The saturation of moisture of about 0.054% was found for samples modified with tributylethylphosphonium diethyl phosphate and reinforced with flax and hemp fibers at RH 100%. The environmental resistance of the materials was found to be improved after the addition of trihexyltetradecylphosphonium bis (2,4,4-trimethylpentyl) phosphinate. Biocomposites with hemp fibers showed slightly less absorption than with flax fibers. It was also observed that ionic liquids: (bis (2,4,4-trimethylpentyl) phosphinate trihexyltetradecylphosphonate) and (bis (2-ethylhexyl) trihexyltetradecylphosphonium phosphate) protect PE biocomposites with plant fibers against mold in high humidity conditions (RH 100%).


2021 ◽  
Vol 2 (3) ◽  
pp. 550-563
Author(s):  
Kalani Periyapperuma ◽  
Laura Sanchez-Cupido ◽  
Jennifer M. Pringle ◽  
Cristina Pozo-Gonzalo

Neodymium (Nd) is one of the most essential rare-earth metals due to its outstanding properties and crucial role in green energy technologies such as wind turbines and electric vehicles. Some of the key uses includes permanent magnets present in technological applications such as mobile phones and hard disk drives, and in nickel metal hydride batteries. Nd demand is continually growing, but reserves are severely limited, which has put its continued availability at risk. Nd recovery from end-of-life products is one of the most interesting ways to tackle the availability challenge. This perspective concentrates on the different methods to recover Nd from permanent magnets and rechargeable batteries, covering the most developed processes, hydrometallurgy and pyrometallurgy, and with a special focus on electrodeposition using highly electrochemical stable media (e.g., ionic liquids). Among all the ionic liquid chemistries, only phosphonium ionic liquids have been studied in-depth, exploring the impact of temperature, electrodeposition potential, salt concentration, additives (e.g., water) and solvation on the electrodeposition quality and quantity. Finally, the importance of investigating new ionic liquid chemistries, as well as the effect of other metal impurities in the ionic liquid on the deposit composition or the stability of the ionic liquids are discussed. This points to important directions for future work in the field to achieve the important goal of efficient and selective Nd recovery to overcome the increasingly critical supply problems.


2017 ◽  
Vol 41 (19) ◽  
pp. 10598-10606 ◽  
Author(s):  
Chong Chen ◽  
Fengmao Liu ◽  
Tengfei Fan ◽  
Qizhen Zhou ◽  
Qingrong Peng

Quaternary ammonium based ionic liquids can be used as eco-friendly solvents/solubilizers for pesticide formulation processing without organic solvents.


Sign in / Sign up

Export Citation Format

Share Document