Atmospheric pitting corrosion of 304L stainless steel: the role of highly concentrated chloride solutions

2015 ◽  
Vol 180 ◽  
pp. 251-265 ◽  
Author(s):  
Steven R. Street ◽  
Na Mi ◽  
Angus J. M. C. Cook ◽  
Haval B. Mohammed-Ali ◽  
Liya Guo ◽  
...  

The morphology of atmospheric pitting corrosion in 304L stainless steel plate was analysed using MgCl2 droplets in relation to changes in relative humidity (RH) and chloride deposition density (CDD). It was found that highly reproducible morphologies occur that are distinct at different RH. Pitting at higher concentrations, i.e. lower RH, resulted in satellite pits forming around the perimeter of wide shallow dish regions. At higher RH, these satellite pits did not form and instead spiral attack into the shallow region was observed. Increasing CDD at saturation resulted in a very broad-mouthed pitting attack within the shallow dish region. Large data sets were used to find trends in pit size and morphology in what is essentially a heterogeneous alloy. Electrochemical experiments on 304 stainless steel wires in highly saturated solutions showed that the passive current density increased significantly above 3 M MgCl2 and the breakdown pitting potential dropped as the concentration increased. It is proposed that the shallow dish regions grow via enhanced dissolution of the passive film, whereas satellite pits and a spiral attack take place with active dissolution of bare metal surfaces.

2013 ◽  
Vol 456 ◽  
pp. 392-398
Author(s):  
Ze Fen Liang ◽  
Min Zheng

In the present paper the influence of the addition of MoSi2particles on the microstructure and pitting corrosion behaviour of laser cladding Co based alloy coatings deposited on 304 stainless steel substrate has been reported. The coating microstructure was investigated by SEM, OM, XRD and EPMA etc.. And the pitting corrosion resistance of coating was evaluated in the 3.5% NaCl solution. The results showed that: (1) The microstructure is fined by increasing MoSi2percentage. And the coating microstructure evolved from dendrites and interdendritic eutectics to various faceted dendrites with the bamboo leaf, flower, or butterfly morphology, when the MoSi2content is from 0~20% to 30~40%; (2) the (Epit-Eprot) of Co based alloy/MoSi2composite coating was lower than that of Co based alloy, and which presented higher self-repairing capability. The pitting potential Epitof Co +(0~20wt.%) MoSi2cladding coatings is higher than that of stainless steel, the pitting corrosion resistance is enhanced; When more MoSi2(30wt.%) was added, the pitting corrosion resistance decreases due to microstructure inhomogeneity and exiting of inclusion.


Author(s):  
Sorush Niknamian

Nowadays, welding of dissimilar metals has become significant. In this process, a number of parameters including but not limited to type of electrode, amount of current, preheating temperature, and welding rate, that are essential to be taken into account. For welding of dissimilar metals, various methods are exploited including shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW). The stimulus for studying welding of 304L stainless steel to pure copper originates from difficulties in joining copper parts of           water-circulating molds to their steel part. In this study, the welding is performed on plates of steel and copper using SMAW, GTAW and combined SMAW+GTAW welding methods with    EL-CuMn2, ENiCrMo-6 and ER70S-4 electrodes. In order to investigate the microstructure and corrosion resistance behavior of welds, the samples were characterized using microstructural study and polarization test. It was observed that among all four welding methods, only combined SMAW+GTAW welding process resulted in successful joint between 304L stainless steel and copper. Both obtained joints possess suitable microstructure and corrosion resistance.


2014 ◽  
Vol 487 ◽  
pp. 54-57 ◽  
Author(s):  
Meng Yu Chai ◽  
Li Chan Li ◽  
Wen Jie Bai ◽  
Quan Duan

304 stainless steel and 316L stainless steel are conventional materials of primary pipeline in nuclear power plants. The present work is to summarize the acoustic emission (AE) characteristics in the process of pitting corrosion of 304 stainless steel, intergranular corrosion of 316L stainless steel and weldments of 316L stainless steel. The work also discussed the current shortcomings and problems of research. At last we proposed the coming possible research topics and directions.


2010 ◽  
Vol 658 ◽  
pp. 380-383 ◽  
Author(s):  
Ying Han ◽  
De Ning Zou ◽  
Wei Zhang ◽  
Jun Hui Yu ◽  
Yuan Yuan Qiao

Specimens of 2507 super-duplex stainless steel aging at 850°C for 5 min, 15 min and 60 min were investigated to evaluate the pitting corrosion resistance in 3.5% NaCl solution at 30°C and 50°C. The results are correlated with the microstructures obtained with different aging time. The precipitation of σ phase remarkably decreases the pitting corrosion resistance of the steel and the specimen aged for 60 min presents the lowest pitting potential at both 30°C and 50°C. With increasing the ambient temperature from 30°C to 50°C, the pitting potential exhibits a reduction tendency, while this tendency is less obviously in enhancing the ambient temperature than in extending the isothermal aging duration from 5 to 60 min. SEM analysis shows that the surrounding regions of σ phase are the preferable sites for the formation of corrosion pits which grew up subsequently. This may be attributed to the lower content of corrosion resistance elements in these regions formatted with σ phase precipitation.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 294
Author(s):  
Shuang Liu ◽  
Chaohua Yue ◽  
Xi Chen ◽  
Qiuhua Zhu ◽  
Yiyou Tu

The pitting corrosion resistance of S32750 super duplex stainless steel, annealing treated at temperatures of 950–1200 °C for 20–60 min, was investigated using potentiodynamic polarization tests. The results show that the volume fractions of ferrite in the S32750 duplex stainless steel increased from 48.9% to 68.4% as annealing temperatures increased from 950 to 1200 °C. The pitting potential of the sample increased first and then decreased from an annealing temperature of 950 to 1050 °C, and the highest pitting potential was observed after annealing at 1050 °C for 35 min. The pitting corrosion resistance of S32750 stainless steel is due to the combination of pitting resistance equivalent number (PREN) value, phase fraction and grain boundary area fraction, and the imbalance of corrosion potential.


Sign in / Sign up

Export Citation Format

Share Document