Potential protective effect of highly bioavailable curcumin on an oxidative stress model induced by microinjection of sodium nitroprusside in mice brain

2014 ◽  
Vol 5 (5) ◽  
pp. 984-989 ◽  
Author(s):  
Qand Agha Nazari ◽  
Yuki Takada-Takatori ◽  
Tadashi Hashimoto ◽  
Atsushi Imaizumi ◽  
Yasuhiko Izumi ◽  
...  

The protective effects of conventional curcumin or highly bioavailable curcumin, Theracurmin®, against oxidative stress is investigated using our in vivo oxidative stress model.

2012 ◽  
Vol 120 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Qand Agha Nazari ◽  
Keita Mizuno ◽  
Toshiaki Kume ◽  
Yuki Takada-Takatori ◽  
Yasuhiko Izumi ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 307
Author(s):  
Yi-Fen Chiang ◽  
Chih-Hung Tsai ◽  
Hsin-Yuan Chen ◽  
Kai-Lee Wang ◽  
Hsin-Yi Chang ◽  
...  

Cardiovascular diseases such as atherosclerosis and aortic valve sclerosis involve inflammatory reactions triggered by various stimuli, causing increased oxidative stress. This increased oxidative stress causes damage to the heart cells, with subsequent cell apoptosis or calcification. Currently, heart valve damage or heart valve diseases are treated by drugs or surgery. Natural antioxidant products are being investigated in related research, such as fucoxanthin (Fx), which is a marine carotenoid extracted from seaweed, with strong antioxidant, anti-inflammatory, and anti-tumor properties. This study aimed to explore the protective effect of Fx on heart valves under high oxidative stress, as well as the underlying mechanism of action. Rat heart valve interstitial cells under H2O2-induced oxidative stress were treated with Fx. Fx improved cell survival and reduced oxidative stress-induced DNA damage, which was assessed by cell viability analysis and staining with propidium iodide. Alizarin Red-S analysis indicated that Fx has a protective effect against calcification. Furthermore, Western blotting revealed that Fx abrogates oxidative stress-induced apoptosis via reducing the expression of apoptosis-related proteins as well as modulate Akt/ERK-related protein expression. Notably, in vivo experiments using 26 dogs treated with 60 mg/kg of Fx in combination with medical treatment for 0.5 to 2 years showed significant recovery in their echocardiographic parameters. Collectively, these in vitro and in vivo results highlight the potential of Fx to protect heart valve cells from high oxidative stress-induced damage.


2013 ◽  
Vol 122 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Qand Agha Nazari ◽  
Toshiaki Kume ◽  
Yuki Takada-Takatori ◽  
Yasuhiko Izumi ◽  
Akinori Akaike

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
H. M. Arif Ullah ◽  
Yuan Yee Lee ◽  
Minki Kim ◽  
Tae-Wan Kim ◽  
Evelyn Saba ◽  
...  

Ginseng (Panax ginseng Meyer) is a well-known herbal medicine that has been used for a long time in Korea to treat various diseases. This study investigated the in vitro and in vivo protective effects of red ginseng extract (RGE) and red ginseng oil (RGO). Liver injury was produced in BALB/c mice by 400 mg/kg of acetaminophen intraperitoneal injection. The antioxidant effects of RGE and RGO on the free radicals 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2 ′ -azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) were measured. In addition, the hepatoprotective activities of RGE and RGO on liver markers, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and oxidative stress markers, including superoxide dismutase (SOD), catalase (CAT) enzyme activity, and 8-hydroxy-2-deoxyguanosine (8-OHdG) in serum and histopathological analysis, were evaluated. The protective effect of RGO on UV-induced phototoxicity was also evaluated in Balb/c 3T3 mouse fibroblast cell line. RGE and RGO effectively inhibited the radicals DPPH and ABTS compared with ascorbic acid and trolox, respectively. Moreover, RGE and RGO significantly decreased the liver enzyme (ALT and AST) levels, increased the antioxidant enzyme (SOD and CAT) levels, and decreased the DNA oxidation product (8-OHdG) content in mice serum. RGO also exhibited protective effect against UV irradiation compared with chlorpromazine hydrochloride, a known phototoxic drug, in Balb/c 3T3 cell line. RGE and RGO possess antioxidant and hepatoprotective properties in mice, and RGO exerts nonphototoxic activity in Balb/c 3T3 cells.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 479
Author(s):  
Seong Hoon Kim ◽  
Hye-Won Yum ◽  
Seung Hyeon Kim ◽  
Wonki Kim ◽  
Su-Jung Kim ◽  
...  

Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing β-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 504
Author(s):  
Iulia Olimpia Pfingstgraf ◽  
Marian Taulescu ◽  
Raluca Maria Pop ◽  
Remus Orăsan ◽  
Laurian Vlase ◽  
...  

Background: Taraxacum officinale (TO) or dandelion has been frequently used to prevent or treat different liver diseases because of its rich composition in phytochemicals with demonstrated effect against hepatic injuries. This study aimed to investigate the possible preventing effect of ethanolic TO root extract (TOERE) on a rat experimental acute on chronic liver failure (ACLF) model. Methods: Chronic liver failure (CLF) was induced by human serum albumin, and ACLF was induced in CLF by D-galactosamine and lipopolysaccharide (D-Gal-LPS). Five groups (n = 5) of male Wistar rats (200–250 g) were used: ACLF, ACLF-silymarin (200 mg/kg b.w./day), three ACLF-TO administered in three doses (200 mg, 100 mg, 50 mg/kg b.w./day). Results: The in vivo results showed that treatment with TOERE administered in three chosen doses before ACLF induction reduced serum liver injury markers (AST, ALT, ALP, GGT, total bilirubin), renal tests (creatinine, urea), and oxidative stress tests (TOS, OSI, MDA, NO, 3NT). Histopathologically, TOERE diminished the level of liver tissue injury and 3NT immunoexpression. Conclusions: This paper indicated oxidative stress reduction as possible mechanisms for the hepatoprotective effect of TOERE in ACLF and provided evidence for the preventive treatment.


2021 ◽  

Myocardial infarction is a serious representation of cardiovescular disease, MicroRNAs play a role in modifying I/R injury and myocardial infarct remodeling. The present study therefore examined the potential role of miR-187 in cardiac I/R injury and its underlying mechanisms. miR-187 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with miR-187 mimic or inhibitor to confirm the function of miR-187 in H/R. DYRK2 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with DYRK2 inhibitor. A myocardium I/R mouse model was established. Circulating levels of miR-187 or DYRK2 was detected by quantitative realtime PCR and protein expression was detected by western blotting. The cell viability in all groups was determined by MTT assay and the apoptosis ratio was detected by flow cytometry after staining with Annexin V-FITC. The effect of miR-187 on cellular ROS generation was examined by DCFH-DA. The level of lipid peroxidation and SOD expression were determined by MDA and SOD assay. The findings indicated that miR-187 may be a possible regulator in the protective effect of H/R-induced cardiomyocyte apoptosis, cellular oxidative stress and leaded to DYRK2 suppression at a posttranscriptional level. Moreover, the improvement of miR-187 on H/R-induced cardiomyocyte injury contributed to the obstruction of DYRK2 expression. In addition, these results identified DYRK2 as the functional downstream target of miR-187 regulated myocardial infarction and oxidative stress.These present work provided the first insight into the function of miR-187 in successfully protect cardiomyocyte both in vivo and in vitro, and such a protective effect were mediated through the regulation of DYRK2 expression.


2016 ◽  
Vol 48 ◽  
pp. 253-264 ◽  
Author(s):  
Pamela Soledad Bustos ◽  
Romina Deza-Ponzio ◽  
Paulina Laura Páez ◽  
Ines Albesa ◽  
José Luis Cabrera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document