Microfluidic static droplet array for analyzing microbial communication on a population gradient

Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 889-899 ◽  
Author(s):  
Heon-Ho Jeong ◽  
Si Hyung Jin ◽  
Byung Jin Lee ◽  
Taesung Kim ◽  
Chang-Soo Lee

Quorum sensing (QS) is a type of cell–cell communication using signal molecules that are released and detected by cells, which respond to changes in their population density.

2000 ◽  
Vol 355 (1397) ◽  
pp. 667-680 ◽  
Author(s):  
Paul Williams ◽  
Miguel Camara ◽  
Andrea Hardman ◽  
Simon Swift ◽  
Deborah Milton ◽  
...  

One crucial feature of almost all bacterial infections is the need for the invading pathogen to reach a critical cell population density sufficient to overcome host defences and establish the infection. Controlling the expression of virulence determinants in concert with cell population density may therefore confer a significant survival advantage on the pathogen such that the host is overwhelmed before a defence response can be fully initiated. Many different bacterial pathogens are now known to regulate diverse physiological processes including virulence in a cell–density–dependent manner through cell–cell communication. This phenomenon, which relies on the interaction of a diffusible signal molecule (e.g. an N –acylhomoserine lactone) with a sensor or transcriptional activator to couple gene expression with cell population density, has become known as ‘quorum sensing’ . Although the size of the ‘quorum’ is likely to be highly variable and influenced by the diffusibility of the signal molecule within infected tissues, nevertheless quorum–sensing signal molecules can be detected in vivo in both experimental animal model and human infections. Furthermore, certain quorum–sensing molecules have been shown to possess pharmacological and immunomodulatory activity such that they may function as virulence determinants per se . As a consequence, quorum sensing constitutes a novel therapeutic target for the design of small molecular antagonists capable of attenuating virulence through the blockade of bacterial cell–cell communication.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Orit Malka ◽  
Dorin Kalson ◽  
Karin Yaniv ◽  
Reut Shafir ◽  
Manikandan Rajendran ◽  
...  

Abstract Background Probiotic milk-fermented microorganism mixtures (e.g., yogurt, kefir) are perceived as contributing to human health, and possibly capable of protecting against bacterial infections. Co-existence of probiotic microorganisms are likely maintained via complex biomolecular mechanisms, secreted metabolites mediating cell-cell communication, and other yet-unknown biochemical pathways. In particular, deciphering molecular mechanisms by which probiotic microorganisms inhibit proliferation of pathogenic bacteria would be highly important for understanding both the potential benefits of probiotic foods as well as maintenance of healthy gut microbiome. Results The microbiome of a unique milk-fermented microorganism mixture was determined, revealing a predominance of the fungus Kluyveromyces marxianus. We further identified a new fungus-secreted metabolite—tryptophol acetate—which inhibits bacterial communication and virulence. We discovered that tryptophol acetate blocks quorum sensing (QS) of several Gram-negative bacteria, particularly Vibrio cholerae, a prominent gut pathogen. Notably, this is the first report of tryptophol acetate production by a yeast and role of the molecule as a signaling agent. Furthermore, mechanisms underscoring the anti-QS and anti-virulence activities of tryptophol acetate were elucidated, specifically down- or upregulation of distinct genes associated with V. cholerae QS and virulence pathways. Conclusions This study illuminates a yet-unrecognized mechanism for cross-kingdom inhibition of pathogenic bacteria cell-cell communication in a probiotic microorganism mixture. A newly identified fungus-secreted molecule—tryptophol acetate—was shown to disrupt quorum sensing pathways of the human gut pathogen V. cholerae. Cross-kingdom interference in quorum sensing may play important roles in enabling microorganism co-existence in multi-population environments, such as probiotic foods and the gut microbiome. This discovery may account for anti-virulence properties of the human microbiome and could aid elucidating health benefits of probiotic products against bacterially associated diseases.


2021 ◽  
Author(s):  
Xueyan Gao ◽  
Jianqiang Lin ◽  
Linxu Chen ◽  
Jianqun Lin ◽  
Xin Pang

Communication is important for organisms living in nature. Quorum sensing system (QS) are intercellular communication systems that promote the sociality of microbes. Microorganisms could promote cell-to-cell cooperation and population density to adapt to the changing environment through QS-mediated regulation that is dependent on the secretion and the detection of signal molecules (or called autoinducers). QS system is also discovered in acidophiles, a microorganism that is widely used in the bioleaching industry and can live in an acidic environment. An example is the LuxI/R-like QS system (AfeI/R) that has been reported in the chemoautotrophic species of the genus Acidithiobacillus. In this chapter, we will introduce the types and distribution of the QS system, and the biological function and regulatory mechanism of QS in acidophiles. We will also discuss the potential ecological function of QS system and the application value of the QS system in the control and regulation of the bioleaching process in the related industries and acid mine damage.


2013 ◽  
Vol 9 (6) ◽  
pp. 406-406
Author(s):  
Jasmine Lee ◽  
Jien Wu ◽  
Yinyue Deng ◽  
Jing Wang ◽  
Chao Wang ◽  
...  

2009 ◽  
Vol 6 (40) ◽  
pp. 959-978 ◽  
Author(s):  
Steve Atkinson ◽  
Paul Williams

For many years, bacterial cells were considered primarily as selfish individuals, but, in recent years, it has become evident that, far from operating in isolation, they coordinate collective behaviour in response to environmental challenges using sophisticated intercellular communication networks. Cell-to-cell communication between bacteria is mediated by small diffusible signal molecules that trigger changes in gene expression in response to fluctuations in population density. This process, generally referred to as quorum sensing (QS), controls diverse phenotypes in numerous Gram-positive and Gram-negative bacteria. Recent advances have revealed that bacteria are not limited to communication within their own species but are capable of ‘listening in’ and ‘broadcasting to’ unrelated species to intercept messages and coerce cohabitants into behavioural modifications, either for the good of the population or for the benefit of one species over another. It is also evident that QS is not limited to the bacterial kingdom. The study of two-way intercellular signalling networks between bacteria and both uni- and multicellular eukaryotes as well as between eukaryotes is just beginning to unveil a rich diversity of communication pathways.


2007 ◽  
Vol 362 (1483) ◽  
pp. 1119-1134 ◽  
Author(s):  
Paul Williams ◽  
Klaus Winzer ◽  
Weng C Chan ◽  
Miguel Cámara

For many years bacteria were considered primarily as autonomous unicellular organisms with little capacity for collective behaviour. However, we now appreciate that bacterial cells are in fact, highly communicative. The generic term ‘quorum sensing’ has been adopted to describe the bacterial cell-to-cell communication mechanisms which co-ordinate gene expression usually, but not always, when the population has reached a high cell density. Quorum sensing depends on the synthesis of small molecules (often referred to as pheromones or autoinducers) that diffuse in and out of bacterial cells. As the bacterial population density increases, so does the synthesis of quorum sensing signal molecules, and consequently, their concentration in the external environment rises. Once a critical threshold concentration has been reached, a target sensor kinase or response regulator is activated (or repressed) so facilitating the expression of quorum sensing-dependent genes. Quorum sensing enables a bacterial population to mount a co-operative response that improves access to nutrients or specific environmental niches, promotes collective defence against other competitor prokaryotes or eukaryotic defence mechanisms and facilitates survival through differentiation into morphological forms better able to combat environmental threats. Quorum sensing also crosses the prokaryotic–eukaryotic boundary since quorum sensing-dependent signalling can be exploited or inactivated by both plants and mammals.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Julie S. Valastyan ◽  
Christina M. Kraml ◽  
Istvan Pelczer ◽  
Thomas Ferrante ◽  
Bonnie L. Bassler

ABSTRACT Quorum sensing is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. Quorum sensing depends on the production, release, and detection of extracellular signal molecules called autoinducers (AIs) that accumulate with increasing cell density. While most AIs are species specific, the AI called AI-2 is produced and detected by diverse bacterial species, and it mediates interspecies communication. We recently reported that mammalian cells produce an AI-2 mimic that can be detected by bacteria through the AI-2 receptor LuxP, potentially expanding the role of the AI-2 system to interdomain communication. Here, we describe a second molecule capable of interdomain signaling through LuxP, 4-hydroxy-5-methylfuran-3(2H)-one (MHF), that is produced by the yeast Saccharomyces cerevisiae. Screening the S. cerevisiae deletion collection revealed Cff1p, a protein with no known role, to be required for MHF production. Cff1p is proposed to be an enzyme, with structural similarity to sugar isomerases and epimerases, and substitution at the putative catalytic residue eliminated MHF production in S. cerevisiae. Sequence analysis uncovered Cff1p homologs in many species, primarily bacterial and fungal, but also viral, archaeal, and higher eukaryotic. Cff1p homologs from organisms from all domains can complement a cff1Δ S. cerevisiae mutant and restore MHF production. In all cases tested, the identified catalytic residue is conserved and required for MHF to be produced. These findings increase the scope of possibilities for interdomain interactions via AI-2 and AI-2 mimics, highlighting the breadth of molecules and organisms that could participate in quorum sensing. IMPORTANCE Quorum sensing is a cell-to-cell communication process that bacteria use to monitor local population density. Quorum sensing relies on extracellular signal molecules called autoinducers (AIs). One AI called AI-2 is broadly made by bacteria and used for interspecies communication. Here, we describe a eukaryotic AI-2 mimic, 4-hydroxy-5-methylfuran-3(2H)-one, (MHF), that is made by the yeast Saccharomyces cerevisiae, and we identify the Cff1p protein as essential for MHF production. Hundreds of viral, archaeal, bacterial, and eukaryotic organisms possess Cff1p homologs. This finding, combined with our results showing that homologs from all domains can replace S. cerevisiae Cff1p, suggests that like AI-2, MHF is widely produced. Our results expand the breadth of organisms that may participate in quorum-sensing-mediated interactions.


Sign in / Sign up

Export Citation Format

Share Document