Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network

2015 ◽  
Vol 11 (3) ◽  
pp. 760-769 ◽  
Author(s):  
Meng Zhou ◽  
Xiaojun Wang ◽  
Jiawei Li ◽  
Dapeng Hao ◽  
Zhenzhen Wang ◽  
...  

Accumulated evidence has shown that long non-coding RNAs (lncRNA) act as a widespread layer in gene regulatory networks and are involved in a wide range of biological processes.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Miguel Casanova ◽  
Madeleine Moscatelli ◽  
Louis Édouard Chauvière ◽  
Christophe Huret ◽  
Julia Samson ◽  
...  

AbstractTransposable elements (TEs) have been proposed to play an important role in driving the expansion of gene regulatory networks during mammalian evolution, notably by contributing to the evolution and function of long non-coding RNAs (lncRNAs). XACT is a primate-specific TE-derived lncRNA that coats active X chromosomes in pluripotent cells and may contribute to species-specific regulation of X-chromosome inactivation. Here we explore how different families of TEs have contributed to shaping the XACT locus and coupling its expression to pluripotency. Through a combination of sequence analysis across primates, transcriptional interference, and genome editing, we identify a critical enhancer for the regulation of the XACT locus that evolved from an ancestral group of mammalian endogenous retroviruses (ERVs), prior to the emergence of XACT. This ERV was hijacked by younger hominoid-specific ERVs that gave rise to the promoter of XACT, thus wiring its expression to the pluripotency network. This work illustrates how retroviral-derived sequences may intervene in species-specific regulatory pathways.


2014 ◽  
Vol 42 (2) ◽  
pp. 352-357 ◽  
Author(s):  
Divya Vashisht ◽  
Michael D. Nodine

Plant miRNAs are short non-coding RNAs that mediate the repression of hundreds of genes. The basic plant body plan is established during early embryogenesis, and recent results have demonstrated that miRNAs play pivotal roles during both embryonic pattern formation and developmental timing. Multiple miRNAs appear to specifically repress transcription factor families during early embryogenesis. Therefore miRNAs probably have a large influence on the gene regulatory networks that contribute to the earliest cellular differentiation events in plants.


2013 ◽  
Author(s):  
Anatoly Yambartsev ◽  
Michael Perlin ◽  
Yevgeniy Kovchegov ◽  
Natalia Shulzhenko ◽  
Karina Mine ◽  
...  

Gene regulatory networks are commonly used for modeling biological processes and revealing underlying molecular mechanisms. The reconstruction of gene regulatory networks from observational data is a challenging task, especially, considering the large number of involved players (e.g. genes) and much fewer biological replicates available for analysis. Herein, we proposed a new statistical method of estimating the number of erroneous edges that strongly enhances the commonly used inference approaches. This method is based on special relationship between correlation and causality, and allows to identify and to remove approximately half of erroneous edges. Using the mathematical model of Bayesian networks and positive correlation inequalities we established a mathematical foundation for our method. Analyzing real biological datasets, we found a strong correlation between the results of our method and the commonly used false discovery rate (FDR) technique. Furthermore, the simulation analysis demonstrates that in large networks, our new method provides a more precise estimation of the proportion of erroneous links than FDR.


2019 ◽  
Vol 16 (3) ◽  
Author(s):  
Peijing Zhang ◽  
Wenyi Wu ◽  
Qi Chen ◽  
Ming Chen

AbstractEukaryotic genomes are pervasively transcribed. Besides protein-coding RNAs, there are different types of non-coding RNAs that modulate complex molecular and cellular processes. RNA sequencing technologies and bioinformatics methods greatly promoted the study of ncRNAs, which revealed ncRNAs’ essential roles in diverse aspects of biological functions. As important key players in gene regulatory networks, ncRNAs work with other biomolecules, including coding and non-coding RNAs, DNAs and proteins. In this review, we discuss the distinct types of ncRNAs, including housekeeping ncRNAs and regulatory ncRNAs, their versatile functions and interactions, transcription, translation, and modification. Moreover, we summarize the integrated networks of ncRNA interactions, providing a comprehensive landscape of ncRNAs regulatory roles.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3355
Author(s):  
Chiara Corrado ◽  
Maria Magdalena Barreca ◽  
Chiara Zichittella ◽  
Riccardo Alessandro ◽  
Alice Conigliaro

In the last decade, an increasing number of studies have demonstrated that non-coding RNA (ncRNAs) cooperate in the gene regulatory networks with other biomolecules, including coding RNAs, DNAs and proteins. Among them, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are involved in transcriptional and translation regulation at different levels. Intriguingly, ncRNAs can be packed in vesicles, released in the extracellular space, and finally internalized by receiving cells, thus affecting gene expression also at distance. This review focuses on the mechanisms through which the ncRNAs can be selectively packaged into extracellular vesicles (EVs).


2017 ◽  
Author(s):  
Lupis Ribeiro ◽  
Vitória Tobias-Santos ◽  
Danielle Santos ◽  
Felipe Antunes ◽  
Geórgia Feltran ◽  
...  

SummaryGene regulatory networks (GRN) evolve as a result of the coevolutionary process acting on transcription factors and the cis-regulatory modules (CRMs) they bind. The zinc-finger transcription factor (TF) zelda (zld) is essential for maternal zygotic transition (MZT) in Drosophila melanogaster, where it directly binds over thousand CRMs to regulate chromatin accessibility. D. melanogaster displays a long germ type of embryonic development, where all segments are simultaneously generated along the whole egg. However, it remains unclear if zld is also involved in MZT of short-germ insects (including those from basal lineages) or in other biological processes. Here we show that zld is an innovation of the Pancrustacea lineage, being absent in more distant arthropods (e.g. chelicerates) and other organisms. To better understand zld’s ancestral function, we thoroughly investigated its roles in a short-germ beetle, Tribolium castaneum, using molecular biology and computational approaches. Our results demonstrate roles for zld not only during the MZT, but also in posterior segmentation and patterning of imaginal disc derived structures. Further, we also demonstrate that zld is critical for posterior segmentation in the hemipteran Rhodnius prolixus, indicating this function predates the origin of holometabolous insects and was subsequently lost in long-germ insects. Our results unveil new roles of zld in maintaining pluripotent state of progenitor cells at the posterior region and suggest that changes in expression of zld (and probably other pioneer TFs) are critical in the evolution of insect GRNs.


Sign in / Sign up

Export Citation Format

Share Document