Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of β-Sheet Domains

2017 ◽  
Vol 9 (20) ◽  
pp. 17489-17498 ◽  
Author(s):  
Dihan Su ◽  
Meng Yao ◽  
Jie Liu ◽  
Yiming Zhong ◽  
Xin Chen ◽  
...  
RSC Advances ◽  
2014 ◽  
Vol 4 (27) ◽  
pp. 14304-14313 ◽  
Author(s):  
Lin Liu ◽  
Xiaogang Yang ◽  
Houyong Yu ◽  
Chao Ma ◽  
Juming Yao

Biomimic silk fibers with refined crystalline structure were produced via incorporating cellulose nanocrystals into silk fibroin matrix to mimic the β-sheet crystallites in natural silk. The fibers exhibit excellent thermal and mechanical properties, attributed to the strong hydrogen bonding interactions between cellulose nanocrystals and silk fibroin as well as cellulose nanocrystal-induced ordered structure.


2015 ◽  
Vol 1120-1121 ◽  
pp. 331-336
Author(s):  
Yan Zhou ◽  
Hui Ying Wu

In this paper, property research of silk fibroin nanofibers by electrospinning dissolved in CaCl2-Formid Acid was discussed. The dissolve process, morphology, structure and mechanical properties of fibers were studied. It showed that more dissolution time was needed to dissolve silk with 1% CaCl2. The diameters of silk fibroin nanofibers decreased with the CaCl2 contents increased and the surface of 6%5% fibers was more uniform and smooth. After ethanol treatment, strong peak at 1628cm-1, 1517cm-1 and 1231cm-1 was corresponding to β-sheet. It was important to discover that silk fibroin was weakly destroyed in CaCl2-FA solvent system, and the regenerated silk fibroin nanofibers had better mechanical properties. The stress of 6%5% fibers was nearly 3 times to traditional way. With different content of CaCl2, the stress of 6%5% fibers was nearly 2 times to 6%1% fibers.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1456
Author(s):  
Isabel Matos Oliveira ◽  
Cristiana Gonçalves ◽  
Myeong Eun Shin ◽  
Sumi Lee ◽  
Rui Luis Reis ◽  
...  

Rheumatoid arthritis is a rheumatic disease for which a healing treatment does not presently exist. Silk fibroin has been extensively studied for use in drug delivery systems due to its uniqueness, versatility and strong clinical track record in medicine. However, in general, natural polymeric materials are not mechanically stable enough, and have high rates of biodegradation. Thus, synthetic materials such as gellan gum can be used to produce composite structures with biological signals to promote tissue-specific interactions while providing the desired mechanical properties. In this work, we aimed to produce hydrogels of tyramine-modified gellan gum with silk fibroin (Ty–GG/SF) via horseradish peroxidase (HRP), with encapsulated betamethasone, to improve the biocompatibility and mechanical properties, and further increase therapeutic efficacy to treat rheumatoid arthritis (RA). The Ty–GG/SF hydrogels presented a β-sheet secondary structure, with gelation time around 2–5 min, good resistance to enzymatic degradation, a suitable injectability profile, viscoelastic capacity with a significant solid component and a betamethasone-controlled release profile over time. In vitro studies showed that Ty–GG/SF hydrogels did not produce a deleterious effect on cellular metabolic activity, morphology or proliferation. Furthermore, Ty–GG/SF hydrogels with encapsulated betamethasone revealed greater therapeutic efficacy than the drug applied alone. Therefore, this strategy can provide an improvement in therapeutic efficacy when compared to the traditional use of drugs for the treatment of rheumatoid arthritis.


2021 ◽  
Vol 22 (7) ◽  
pp. 3391
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Katarzyna Reczyńska ◽  
Elżbieta Pamuła

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 17914-17923
Author(s):  
Reza Eivazzadeh-Keihan ◽  
Hooman Aghamirza Moghim Aliabadi ◽  
Fateme Radinekiyan ◽  
Mohammad Sobhani ◽  
Farzane khalili ◽  
...  

Given the important aspects of wound healing approaches, in this work, an innovative biocompatible nanobiocomposite scaffold was designed and prepared based on cross-linked lignin–agarose hydrogel, extracted silk fibroin solution, and zinc chromite (ZnCr2O4) nanoparticles.


2020 ◽  
Vol 248 ◽  
pp. 116802 ◽  
Author(s):  
Reza Eivazzadeh-Keihan ◽  
Fateme Radinekiyan ◽  
Hamid Madanchi ◽  
Hooman Aghamirza Moghim Aliabadi ◽  
Ali Maleki

2015 ◽  
Vol 54 (8) ◽  
pp. 2462-2466 ◽  
Author(s):  
Francesco Simone Ruggeri ◽  
Jozef Adamcik ◽  
Jae Sun Jeong ◽  
Hilal A. Lashuel ◽  
Raffaele Mezzenga ◽  
...  

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1807-1812 ◽  
Author(s):  
H.-S. KIM ◽  
W.-I. PARK ◽  
Y. KIM ◽  
H.-J. JIN

Silk films prepared from regenerated silk fibroin are normally stabilized by β-sheet formation through the use of solvents (methanol, water etc.). Herein, we report a new method of preparing water-stable films without a β-sheet conformation from regenerated silk fibroin solutions by incorporating a small amount (0.2 wt%) of multiwalled carbon nanotubes (MWCNTs). To extend the biomaterial utility of silk proteins, forming water-stable silk-based materials with enhanced mechanical properties is essential. Scanning electron microscopy and transmission electron microscopy were used to observe the morphology of the MWCNT-incorporated silk films. The wide-angle X-ray diffraction provided clear evidence of the crystallization of the silk fibroin induced by MWCNT in the composite films without any additional annealing processing. The tensile modulus and strength of the composite films were improved by 108% and 51%, respectively, by the incorporation of 0.2 wt% of MWCNTs, as compared with those of the pure silk films. The method described in this study will provide an alternative means of crystallizing silk fibroin films without using an organic solvent or blending with any other polymers, which may be important in biomedical applications.


2013 ◽  
Vol 721 ◽  
pp. 274-277
Author(s):  
Li Li Ji ◽  
Qiao Ling Li ◽  
Zeng Hu Yang ◽  
Wei Jing Hu ◽  
Kui Hua Zhang

Vitamin E d-alpha-tocopheryl polyethylene glycol 1000 succinate (VE TPGS) loaded silk fibroin (SF)/ hyaluronic acid (HA) nanofibrous scaffolds were fabricated by means of electrospinning to biomimic the natural extracellular matrix. Scanning electronic microscopy (SEM) results indicated that electrospun VE TPGS loaded SF/HA nanofibers were ribbon-shaped, the width of nanofibers decreased slightly with the addition of VE TPGS to SF/HA blended solutions. Fourier transform infrared (FTIR) spectroscopy and Wide-angle X-ray diffraction (WAXD) curves revealed that VE TPGS did not induce SF conformation from random coil to β-sheet. SF conformation converted from random coil to β-sheet after being treated with 75% ethanol vapor. In vitro release studies confirmed VE TPGS had no obvious burst release and present good release behavior.


Sign in / Sign up

Export Citation Format

Share Document