Fast and complete in situ mineralization of contaminated soils using a novel method for superoxide generation

RSC Advances ◽  
2015 ◽  
Vol 5 (9) ◽  
pp. 6571-6577 ◽  
Author(s):  
Uri Stoin ◽  
Alex Mojon ◽  
Yoel Sasson

Our remediation technology is by far superior to any previous technologies for soil purification from hydrocarbons and petroleum products.

2013 ◽  
Vol 295-298 ◽  
pp. 1089-1092 ◽  
Author(s):  
Yang Li ◽  
Jia Xi Tang ◽  
Tao Zhang ◽  
Mei Hua Lian ◽  
Xi Zhuo Tian

This paper review the chemical stabilization in arsenic contaminated soil use the in situ chemical stabilization technology. Application of iron oxide, alkaline material and phosphorus are very effective agents to fix the arsenic-contaminated soil. In addition, the future study on remediation technology for arsenic-contaminated soils was prospected.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marco Veneranda ◽  
Nagore Prieto-Taboada ◽  
Jose Antonio Carrero ◽  
Ilaria Costantini ◽  
Aitor Larrañaga ◽  
...  

AbstractThe conservation of iron objects exposed to marine aerosol is threatened by the formation of akaganeite, a highly unstable Cl-bearing corrosion phase. As akaganeite formation is responsible of the exfoliation of the rust layer, chlorides trigger a cyclic alteration phenomenon that often ends with the total consumption of the iron core. To prevent this degradation process, movable iron elements (e.g. archaeometallurgical artefacts) are generally immersed in alkaline dechlorination baths. Aiming to transfer this successful method to the treatment of immovable iron objects, we propose the in-situ application of alkaline solutions through the use of highly absorbent wraps. As first step of this novel research line, the present work defines the best desalination solution to be used and optimizes its extraction yield. After literature review, a screening experimental design was performed to understand the single and synergic effects of common additives used for NaOH baths. Once the most effective variables were selected, an optimization design was carried out to determine the optimal conditions to be set during treatment. According to the experimental work here presented, the use of 0.7 M NaOH solutions applied at high temperatures (above 50 °C) is recommended. Indeed, these conditions enhance chloride extraction and iron leaching inhibition, while promoting corrosion stabilization.


2021 ◽  
Vol 13 (2) ◽  
pp. 320
Author(s):  
José P. Granadeiro ◽  
João Belo ◽  
Mohamed Henriques ◽  
João Catalão ◽  
Teresa Catry

Intertidal areas provide key ecosystem services but are declining worldwide. Digital elevation models (DEMs) are important tools to monitor the evolution of such areas. In this study, we aim at (i) estimating the intertidal topography based on an established pixel-wise algorithm, from Sentinel-2 MultiSpectral Instrument scenes, (ii) implementing a set of procedures to improve the quality of such estimation, and (iii) estimating the exposure period of the intertidal area of the Bijagós Archipelago, Guinea-Bissau. We first propose a four-parameter logistic regression to estimate intertidal topography. Afterwards, we develop a novel method to estimate tide-stage lags in the area covered by a Sentinel-2 scene to correct for geographical bias in topographic estimation resulting from differences in water height within each image. Our method searches for the minimum differences in height estimates obtained from rising and ebbing tides separately, enabling the estimation of cotidal lines. Tidal-stage differences estimated closely matched those published by official authorities. We re-estimated pixel heights from which we produced a model of intertidal exposure period. We obtained a high correlation between predicted and in-situ measurements of exposure period. We highlight the importance of remote sensing to deliver large-scale intertidal DEM and tide-stage data, with relevance for coastal safety, ecology and biodiversity conservation.


1990 ◽  
Vol 30 (3) ◽  
pp. 281-293
Author(s):  
David J. Wilson ◽  
Ann N. Clarke ◽  
Robert D. Mutch

2017 ◽  
Vol 24 (12) ◽  
pp. 11265-11278 ◽  
Author(s):  
Bérénice Ranc ◽  
Pierre Faure ◽  
Véronique Croze ◽  
Catherine Lorgeoux ◽  
Marie-Odile Simonnot

Author(s):  
Yumeng Wang ◽  
Shaofeng Wang ◽  
Yu Song ◽  
Peiwen Zhang ◽  
Xu Ma ◽  
...  

2021 ◽  
Author(s):  
Kasturi Vimalanathan ◽  
Timotheos Palmer ◽  
Zoe Gardner ◽  
Irene Ling ◽  
Soraya Rahpeima ◽  
...  

Herein, we have explored the use of a microfluidics platform for the exfoliation and oxidation of liquid gallium into ultrathin sheets of gallium oxide under continuous flow condition. The novel method developed here takes advantage of the high mass transfer in liquids and has the potential for creating high yielding thin sheets of oxidised gallium with insulating properties as well as acts as an active catalyst in hydrogen evolution reactions. This highlights the potential utility of the sheets as an alternative to the expensive and scarce noble metal based electrocatalysts


2005 ◽  
Vol 35 (10) ◽  
pp. 2447-2456 ◽  
Author(s):  
John G Carman ◽  
Gordon Reese ◽  
Rodney J Fuller ◽  
Timnit Ghermay ◽  
Roger Timmis

Gymnospermous embryos are nourished by fluids secreted from the megagametophyte. During early embryony, these fluids occupy the newly formed corrosion cavity. We describe a novel method for extracting corrosion cavity fluid and provide chemical analyses based on extractions from approximately 120 000 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) megagametophytes. Levels of potassium, phosphorus, calcium, zinc, and iron were higher in corrosion cavity fluid than in whole tissue, but levels of sulphur and manganese were lower. Levels of cyclitols, sucrose equivalents, erythrose, and arabinose were many-fold higher in corrosion cavity fluid than in whole tissues. Ala, Ser, Arg, Glx, and NH3 exceeded 80 mmol/kg dry mass in corrosion cavity fluid. These levels were about 100-fold higher than those found in whole tissues. During early embryony, hormone levels in corrosion cavity fluid were higher than levels observed in whole megagametophytes by 120-fold for indole-3-acetic acid, 53-fold for abscisic acid, and 8- to 10-fold for cytokinins. Nutrient and hormone levels tended to be much higher in the corrosion cavity fluid than would have been predicted based on whole-tissue analyses. Dynamic changes in nutrient and hormone levels occurred over time in the corrosion cavity, and these changes may normalize embryony in situ.


Sign in / Sign up

Export Citation Format

Share Document