Anion-mediated synthesis of monodisperse silver nanoparticles useful for screen printing of high-conductivity patterns on flexible substrates for printed electronics

RSC Advances ◽  
2015 ◽  
Vol 5 (13) ◽  
pp. 9783-9791 ◽  
Author(s):  
Li Liu ◽  
Xiaoxia Wan ◽  
Lingling Sun ◽  
Shuanglei Yang ◽  
Zhigao Dai ◽  
...  

Monodisperse silver nanoparticles (NPs) have been synthesized on a large scale by oxidation–reduction reactions in water and used in the printed electronics.

2014 ◽  
Vol 904 ◽  
pp. 121-125 ◽  
Author(s):  
Ji Lan Fu ◽  
Ya Ling Li ◽  
Li Xin Mo ◽  
Yu Wang ◽  
Jun Ran ◽  
...  

The recent dramatic progress in the printed electronics and flexible electronics, due to the universality of the substrates including the foldable and stretchable substrates, has opened a new prospect in the field of future electronics. In this paper, silver nanospheres in large-scale are synthesized, the nanosilver ink with 63.88% silver content are prepared and a new type of highly conductive and far identify distance RFID tags are manufactured. Especially there are no resin and other additives containing in our conductive ink which satisfy the rheological characteristics and process of screen printing. The tags exhibit the best radiation performance own to there is no high temperature sintering in need. The surface resistance of the tags could be 80 mΩ/, and the identify distance reach to 6.0m. Keywords:silver nanoparticles, conductive ink, RFID tags


2012 ◽  
Vol 2012 (1) ◽  
pp. 000935-000939
Author(s):  
Yiliang Wu ◽  
Ping Liu ◽  
Tony Wigglesworth

Printable conductors with high conductivity would be critical for low-cost printed electronics. In view of printability, conductivity, and electrical stability, metal such as gold or silver derived from solution-deposited precursor compositions would be an ideal candidate. Xerox has been exploring the use of silver nanoparticles as conductor precursor composition for printed electronics. This paper reviews our research in the development of alkylamine-stabilized silver nanoparticles that can be sintered at low temperature (∼ 120 °C) for high conductivity (>10000 S/cm). Silver nanoparticle ink formulations based on these silver nanoparticles exhibit surface-energy independent printability which enables the fabrication of high-performance top-contact transistor devices, and self-assembly characteristic when printed on hydrophilic substrates which allows for large-area, defect-free source drain arrays to be printed with a narrow and uniform channel length.


2022 ◽  
pp. 2101665
Author(s):  
Robert Brooke ◽  
Kosala Wijeratne ◽  
Kathrin Hübscher ◽  
Dagmawi Belaineh ◽  
Peter Andersson Ersman

2013 ◽  
Vol 10 (2) ◽  
pp. 49-53 ◽  
Author(s):  
Yiliang Wu ◽  
Ping Liu ◽  
Tony Wigglesworth

Printable conductors with high conductivity are critical for low-cost printed electronics. From the view of printability, conductivity, and electrical stability, an ideal candidate would be a metal such as gold or silver derived from solution-deposited precursor compositions. We have been exploring the use of silver nanoparticles as the conductor precursor for printed electronics. This paper reviews our research in the development of alkylamine-stabilized silver nanoparticles that can be sintered at a low temperature (∼120°C) for high conductivity (>10,000 S/cm). Silver nanoparticle ink formulations based on these silver nanoparticles exhibit surface-energy independent printability, which enables the fabrication of high-performance top-contact transistor devices, and self-assembly characteristic when printed on hydrophilic substrates, which allows for large-area, defect-free source/drain arrays to be printed with a narrow and uniform channel length.


1994 ◽  
Vol 59 (3) ◽  
pp. 549-557
Author(s):  
František Skopal ◽  
Václav Dušek

Theoretical relationships and simplifying conditions have been derived for the feed of two reaction components into a nonisochoric reactor with ideal stirring. The feed of reaction components is controlled by the negative feedback at a constant absorbance of the reaction mixture. The theoretical relationships have been verified using model 2. order oxidation-reduction reactions of Ce(IV)/V(IV) and Fe(III)/V(III) in 1 M sulfuric acid at 20 °C.


Author(s):  
Mahesh Soni ◽  
Dhayalan Shakthivel ◽  
Adamos Christou ◽  
Ayoub Zumeit ◽  
Nivasan Yogeswaran ◽  
...  

2008 ◽  
Vol 19 (41) ◽  
pp. 415604 ◽  
Author(s):  
Youngil Lee ◽  
Jun-rak Choi ◽  
Kwi Jong Lee ◽  
Nathan E Stott ◽  
Donghoon Kim

Sign in / Sign up

Export Citation Format

Share Document