Development of Silver Nanoparticle Ink for Printed Electronics

2012 ◽  
Vol 2012 (1) ◽  
pp. 000935-000939
Author(s):  
Yiliang Wu ◽  
Ping Liu ◽  
Tony Wigglesworth

Printable conductors with high conductivity would be critical for low-cost printed electronics. In view of printability, conductivity, and electrical stability, metal such as gold or silver derived from solution-deposited precursor compositions would be an ideal candidate. Xerox has been exploring the use of silver nanoparticles as conductor precursor composition for printed electronics. This paper reviews our research in the development of alkylamine-stabilized silver nanoparticles that can be sintered at low temperature (∼ 120 °C) for high conductivity (>10000 S/cm). Silver nanoparticle ink formulations based on these silver nanoparticles exhibit surface-energy independent printability which enables the fabrication of high-performance top-contact transistor devices, and self-assembly characteristic when printed on hydrophilic substrates which allows for large-area, defect-free source drain arrays to be printed with a narrow and uniform channel length.

2013 ◽  
Vol 10 (2) ◽  
pp. 49-53 ◽  
Author(s):  
Yiliang Wu ◽  
Ping Liu ◽  
Tony Wigglesworth

Printable conductors with high conductivity are critical for low-cost printed electronics. From the view of printability, conductivity, and electrical stability, an ideal candidate would be a metal such as gold or silver derived from solution-deposited precursor compositions. We have been exploring the use of silver nanoparticles as the conductor precursor for printed electronics. This paper reviews our research in the development of alkylamine-stabilized silver nanoparticles that can be sintered at a low temperature (∼120°C) for high conductivity (>10,000 S/cm). Silver nanoparticle ink formulations based on these silver nanoparticles exhibit surface-energy independent printability, which enables the fabrication of high-performance top-contact transistor devices, and self-assembly characteristic when printed on hydrophilic substrates, which allows for large-area, defect-free source/drain arrays to be printed with a narrow and uniform channel length.


2019 ◽  
Vol 20 (9) ◽  
pp. 2124 ◽  
Author(s):  
Lixin Mo ◽  
Zhenxin Guo ◽  
Li Yang ◽  
Qingqing Zhang ◽  
Yi Fang ◽  
...  

Printed electronics on flexible substrates has attracted tremendous research interest research thanks its low cost, large area production capability and environmentally friendly advantages. Optimal characteristics of silver nanoparticles (Ag NPs) based inks are crucial for ink rheology, printing, post-print treatment, and performance of the printed electronics devices. In this review, the methods and mechanisms for obtaining Ag NPs based inks that are highly conductive under moderate sintering conditions are summarized. These characteristics are particularly important when printed on temperature sensitive substrates that cannot withstand sintering of high temperature. Strategies to tailor the protective agents capping on the surface of Ag NPs, in order to optimize the sizes and shapes of Ag NPs as well as to modify the substrate surface, are presented. Different (emerging) sintering technologies are also discussed, including photonic sintering, electrical sintering, plasma sintering, microwave sintering, etc. Finally, applications of the Ag NPs based ink in transparent conductive film (TCF), thin film transistor (TFT), biosensor, radio frequency identification (RFID) antenna, stretchable electronics and their perspectives on flexible and printed electronics are presented.


Author(s):  
Mahesh Soni ◽  
Dhayalan Shakthivel ◽  
Adamos Christou ◽  
Ayoub Zumeit ◽  
Nivasan Yogeswaran ◽  
...  

MRS Bulletin ◽  
2006 ◽  
Vol 31 (6) ◽  
pp. 471-475 ◽  
Author(s):  
Marc Chason ◽  
Daniel R. Gamota ◽  
Paul W. Brazis ◽  
Krishna Kalyanasundaram ◽  
Jie Zhang ◽  
...  

AbstractDevelopments originally targeted toward economical manufacturing of telecommunications products have planted the seeds for new opportunities such as low-cost, large-area electronics based on printing technologies. Organic-based materials systems for printed wiring board (PWB) construction have opened up unique opportunities for materials research in the fabrication of modular electronic systems.The realization of successful consumer products has been driven by materials developments that expand PWB functionality through embedded passive components, novel MEMS structures (e.g., meso-MEMS, in which the PWB-based structures are at the milliscale instead of the microscale), and microfluidics within the PWB. Furthermore, materials research is opening up a new world of printed electronics technology, where active devices are being realized through the convergence of printing technologies and microelectronics.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 892
Author(s):  
Dieter Reenaers ◽  
Wouter Marchal ◽  
Ianto Biesmans ◽  
Philippe Nivelle ◽  
Jan D’Haen ◽  
...  

The field of printed electronics is rapidly evolving, producing low cost applications with enhanced performances with transparent, stretchable properties and higher reliability. Due to the versatility of printed electronics, industry can consider the implementation of electronics in a way which was never possible before. However, a post-processing step to achieve conductive structures—known as sintering—limits the production ease and speed of printed electronics. This study addresses the issues related to fast sintering without scarifying important properties such as conductivity and surface roughness. A drop-on-demand inkjet printer is employed to deposit silver nanoparticle-based inks. The post-processing time of these inks is reduced by replacing the conventional oven sintering procedure with the state-of-the-art method, named near-infrared sintering. By doing so, the post-processing time shortens from 30–60 min to 6–8 s. Furthermore, the maximum substrate temperature during sintering is reduced from 200 °C to 120 °C. Based on the results of this study, one can conclude that near-infrared sintering is a ready-to-industrialize post-processing method for the production of printed electronics, capable of sintering inks at high speed, low temperature and with low complexity. Furthermore, it becomes clear that ink optimization plays an important role in processing inkjet printable inks, especially after being near-infrared sintered.


2014 ◽  
Vol 528 ◽  
pp. 112-117
Author(s):  
Chao Rong Li ◽  
Hu Yang ◽  
Juan Li

Water/toluene interfacial self-assembly of nanostructures is a powerful bottom-up approach for film fabrication because of the low cost and high efficiency, and it is a simple and universal method for almost all low-dimensional nanostructures. The method involved adding alcohol and then toluene (here the dispersant was itself alcohol, only toluene was added) into SiO2 nanoparticle dispersion, and then a large quantity of distilled water was rapidly poured into the mixed system. Simultaneously, nanoparticles in the dispersion were extracted to the water/toluene interface, forming a thin film with a nearly perfect hexagonal close packed phase. Large-area nanoparticle monolayer films (e.g., more than 20 cm2) could be prepared in less than 1 min. The close-packed structures of these thin films were verified by a field emission scanning electron microscopy (FESEM, Hitachi S-4800, Japan). We also investigated the whole process of forming the films and found out the mechanism of water-induced interfacial assembly. As for the specific kinetic mechanism of the fabrication process, it is expected to further study in later time.


Author(s):  
Yi Zheng ◽  
Zhi-Zhu He ◽  
Jun Yang ◽  
Jing Liu

The advancement of printed electronics technology has significantly facilitated the development of electronic engineering. However, so far there still remain big barriers to impede the currently available printing technologies from being extensively used. Many of the difficulties came from the factors like: complicated ink-configurations, high post-treatment temperature, poor conductivity in room temperature and extremely high cost and time consuming fabrication process. From an alternative strategy, our recently invented desktop liquid metal printer offered a flexible way to better address the above deficiencies. Through modifying the system developed in the authors’ lab, here we demonstrated the feasibility of the method in quickly and reliably printing out various large area electronic circuits. Particularly, the liquid metal ink made of GaIn24.5 alloy, with a high electrical resistivity of 2.98×10−7 Ω·m, can be rapidly printed on polyvinyl chloride (PVC) substrate with maximum sizes spanning from centimeter size to meter large. Most important of all, all these manufactures were achieved at an extremely low cost level which clearly shows the ubiquitous value of the liquid metal printer. To evaluate the working performance of the present electronics fabrication method, the electrical resistance and wire width of the printed circuits were investigated under multiple overprinting cycles. For practical illustration purpose, LED lighting conductive patterns which can serve as a functional electronic decoration art were fabricated on the flexible plastic substrate. The present work sets up an example for directly making large-scale ending consumer electronics via a high-efficiency and low-cost way.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Adamos Christou ◽  
Fengyuan Liu ◽  
Ravinder Dahiya

AbstractPrinting is a promising method for the large-scale, high-throughput, and low-cost fabrication of electronics. Specifically, the contact printing approach shows great potential for realizing high-performance electronics with aligned quasi-1D materials. Despite being known for more than a decade, reports on a precisely controlled system to carry out contact printing are rare and printed nanowires (NWs) suffer from issues such as location-to-location and batch-to-batch variations. To address this problem, we present here a novel design for a tailor-made contact printing system with highly accurate control of printing parameters (applied force: 0–6 N ± 0.3%, sliding velocity: 0–200 mm/s, sliding distance: 0–100 mm) to enable the uniform printing of nanowires (NWs) aligned along 93% of the large printed area (1 cm2). The system employs self-leveling platforms to achieve optimal alignment between substrates, whereas the fully automated process minimizes human-induced variation. The printing dynamics of the developed system are explored on both rigid and flexible substrates. The uniformity in printing is carefully examined by a series of scanning electron microscopy (SEM) images and by fabricating a 5 × 5 array of NW-based photodetectors. This work will pave the way for the future realization of highly uniform, large-area electronics based on printed NWs.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Abhishek Singh Dahiya ◽  
Dhayalan Shakthivel ◽  
Yogeenth Kumaresan ◽  
Ayoub Zumeit ◽  
Adamos Christou ◽  
...  

Abstract The Printed Electronics (PE) is expected to revolutionise the way electronics will be manufactured in the future. Building on the achievements of the traditional printing industry, and the recent advances in flexible electronics and digital technologies, PE may even substitute the conventional silicon-based electronics if the performance of printed devices and circuits can be at par with silicon-based devices. In this regard, the inorganic semiconducting materials-based approaches have opened new avenues as printed nano (e.g. nanowires (NWs), nanoribbons (NRs) etc.), micro (e.g. microwires (MWs)) and chip (e.g. ultra-thin chips (UTCs)) scale structures from these materials have been shown to have performances at par with silicon-based electronics. This paper reviews the developments related to inorganic semiconducting materials based high-performance large area PE, particularly using the two routes i.e. Contact Printing (CP) and Transfer Printing (TP). The detailed survey of these technologies for large area PE onto various unconventional substrates (e.g. plastic, paper etc.) is presented along with some examples of electronic devices and circuit developed with printed NWs, NRs and UTCs. Finally, we discuss the opportunities offered by PE, and the technical challenges and viable solutions for the integration of inorganic functional materials into large areas, 3D layouts for high throughput, and industrial-scale manufacturing using printing technologies.


Sign in / Sign up

Export Citation Format

Share Document