scholarly journals Surface confined self-assembly of polyampholytes generated from charge-shifting polymers

2015 ◽  
Vol 51 (74) ◽  
pp. 14092-14095 ◽  
Author(s):  
T. Garnier ◽  
A. Dochter ◽  
N. T. T. Chau ◽  
P. Schaaf ◽  
L. Jierry ◽  
...  

Polyampholyte-based films can be efficiently self-assembled onto a surface in a one-pot manner by using a charge-shifting polyelectrolyte transformed into a polyampholyte by an electrogenerated gradient of protons.

2017 ◽  
Vol 53 (65) ◽  
pp. 9147-9150 ◽  
Author(s):  
Nanami Hano ◽  
Makoto Takafuji ◽  
Hirotaka Ihara

Polymer microspheres with wrinkled hard surfaces composed of self-assembled silica nanoparticles were prepared via suspension polymerization.


RSC Advances ◽  
2015 ◽  
Vol 5 (128) ◽  
pp. 105800-105809 ◽  
Author(s):  
Sampa Sarkar ◽  
Kshudiram Mantri ◽  
Dinesh Kumar ◽  
Suresh K. Bhargava ◽  
Sarvesh K. Soni

Self-assembly of hydrophobic lipase enzyme in hydrophobic and hydrophilic ionic liquids and a correlation in structure–function and activity.


2014 ◽  
Vol 2 (34) ◽  
pp. 5576-5584 ◽  
Author(s):  
Sreedevi Krishnakumar ◽  
Karical R. Gopidas

Novel Fréchet-type dendron based organic nanodots exhibiting stimuli responsive reversible morphological transformation have been synthesized by a one-pot reaction which involves etching off gold core of a gold nanoparticle cored dendrimer. Self-assembled FDNs can be utilized for encapsulation and on-demand release of guests.


RSC Advances ◽  
2016 ◽  
Vol 6 (40) ◽  
pp. 33501-33509 ◽  
Author(s):  
Sergey Sarin ◽  
Sophia Kolesnikova ◽  
Irina Postnova ◽  
Chang-Sik Ha ◽  
Yury Shchipunov

Films containing a new crystalline polymorph are prepared by a one-pot technique combining the formation of building blocks of clay nanoplatelets with chitosan macromolecules and their evaporation-induced self-assembly.


2016 ◽  
Vol 7 (45) ◽  
pp. 6992-7001 ◽  
Author(s):  
Liang Ding ◽  
Wei Song ◽  
Ruiyu Jiang ◽  
Lei Zhu

Noncovalently connected polymers were prepared by one-pot efficient host–guest complexation between β-CD and adamantane moieties followed by acyclic diene metathesis polymerization or carried out simultaneously, and further self-assembled into supramolecular nanostructures with diverse morphologies.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2020 ◽  
Author(s):  
Daniel B. Straus ◽  
Robert J. Cava

The design of new chiral materials usually requires stereoselective organic synthesis to create molecules with chiral centers. Less commonly, achiral molecules can self-assemble into chiral materials, despite the absence of intrinsic molecular chirality. Here, we demonstrate the assembly of high-symmetry molecules into a chiral van der Waals structure by synthesizing crystals of C<sub>60</sub>(SnI<sub>4</sub>)<sub>2</sub> from icosahedral buckminsterfullerene (C<sub>60</sub>) and tetrahedral SnI4 molecules through spontaneous self-assembly. The SnI<sub>4</sub> tetrahedra template the Sn atoms into a chiral cubic three-connected net of the SrSi<sub>2</sub> type that is held together by van der Waals forces. Our results represent the remarkable emergence of a self-assembled chiral material from two of the most highly symmetric molecules, demonstrating that almost any molecular, nanocrystalline, or engineered precursor can be considered when designing chiral assemblies.


2019 ◽  
Author(s):  
Liman Hou ◽  
Marta Dueñas-Diez ◽  
Rohit Srivastava ◽  
Juan Perez-Mercader

<p></p><p>Belousov-Zhabotinsky (B-Z) reaction driven polymerization-induced self-assembly (PISA), or B-Z PISA, is a novel method for the autonomous one-pot synthesis of polymer vesicles from a macroCTA (macro chain transfer agent) and monomer solution (“soup”) containing the above and the BZ reaction components. In it, the polymerization is driven (and controlled) by periodically generated radicals generated in the oscillations of the B-Z reaction. These are inhibitor/activator radicals for the polymerization. Until now B-Z PISA has only been carried out in batch reactors. In this manuscript we present the results of running the system using a continuously stirred tank reactor (CSTR) configuration which offers some interesting advantages.Indeed, by controlling the CSTR parameters we achieve reproducible and simultaneous control of the PISA process and of the properties of the oscillatory cargo encapsulated in the resulting vesicles. Furthermore, the use of flow chemistry enables a more precise morphology control and chemical cargo tuning. Finally, in the context of biomimetic applications a CSTR operation mimics more closely the open non-equilibrium conditions of living systems and their surrounding environments.</p><p></p>


2021 ◽  
Vol 11 (7) ◽  
pp. 3254
Author(s):  
Marco Pisco ◽  
Francesco Galeotti

The realization of advanced optical fiber probes demands the integration of materials and structures on optical fibers with micro- and nanoscale definition. Although researchers often choose complex nanofabrication tools to implement their designs, the migration from proof-of-principle devices to mass production lab-on-fiber devices requires the development of sustainable and reliable technology for cost-effective production. To make it possible, continuous efforts are devoted to applying bottom-up nanofabrication based on self-assembly to decorate the optical fiber with highly ordered photonic structures. The main challenges still pertain to “order” attainment and the limited number of implementable geometries. In this review, we try to shed light on the importance of self-assembled ordered patterns for lab-on-fiber technology. After a brief presentation of the light manipulation possibilities concerned with ordered structures, and of the new prospects offered by aperiodically ordered structures, we briefly recall how the bottom-up approach can be applied to create ordered patterns on the optical fiber. Then, we present un-attempted methodologies, which can enlarge the set of achievable structures, and can potentially improve the yielding rate in finely ordered self-assembled optical fiber probes by eliminating undesired defects and increasing the order by post-processing treatments. Finally, we discuss the available tools to quantify the degree of order in the obtained photonic structures, by suggesting the use of key performance figures of merit in order to systematically evaluate to what extent the pattern is really “ordered”. We hope such a collection of articles and discussion herein could inspire new directions and hint at best practices to fully exploit the benefits inherent to self-organization phenomena leading to ordered systems.


2009 ◽  
Vol 143 ◽  
pp. 345 ◽  
Author(s):  
Aurelie M. Brizard ◽  
Marc C. A. Stuart ◽  
Jan H. van Esch

Sign in / Sign up

Export Citation Format

Share Document