A crystalline low molecular weight cyclic organoboron compound for efficient solid state lithium ion transport

2015 ◽  
Vol 51 (81) ◽  
pp. 15035-15038 ◽  
Author(s):  
Prerna Joshi ◽  
Raman Vedarajan ◽  
Noriyoshi Matsumi

We report the synthesis of a crystalline cyclic organoboron compound that shows an anomalous Li-ion conduction behaviour with specific composition and method of insertion of a Li salt.


2020 ◽  
Vol MA2020-02 (68) ◽  
pp. 3492-3492
Author(s):  
Koki Nakajima ◽  
Takashi Tokumasu ◽  
Takuya Mabuchi


RSC Advances ◽  
2020 ◽  
Vol 10 (15) ◽  
pp. 8780-8789 ◽  
Author(s):  
Prerna Joshi ◽  
Raman Vedarajan ◽  
Anjaiah Sheelam ◽  
Kothandaraman Ramanujam ◽  
Bernard Malaman ◽  
...  

A non-polymer crystalline organoboron electrolyte results in the formation of nano-channels for directional conduction of Li ions, owing to presence of boron, allowing Lewis acid–base interaction.



2019 ◽  
Vol 17 ◽  
pp. 266-274 ◽  
Author(s):  
Gaozhan Liu ◽  
Dongjiu Xie ◽  
Xuelong Wang ◽  
Xiayin Yao ◽  
Shaojie Chen ◽  
...  


2018 ◽  
Vol 9 ◽  
pp. 1623-1628 ◽  
Author(s):  
Jonathan Op de Beeck ◽  
Nouha Labyedh ◽  
Alfonso Sepúlveda ◽  
Valentina Spampinato ◽  
Alexis Franquet ◽  
...  

The continuous demand for improved performance in energy storage is driving the evolution of Li-ion battery technology toward emerging battery architectures such as 3D all-solid-state microbatteries (ASB). Being based on solid-state ionic processes in thin films, these new energy storage devices require adequate materials analysis techniques to study ionic and electronic phenomena. This is key to facilitate their commercial introduction. For example, in the case of cathode materials, structural, electrical and chemical information must be probed at the nanoscale and in the same area, to identify the ionic processes occurring inside each individual layer and understand the impact on the entire battery cell. In this work, we pursue this objective by using two well established nanoscale analysis techniques namely conductive atomic force microscopy (C-AFM) and secondary ion mass spectrometry (SIMS). We present a platform to study Li-ion composites with nanometer resolution that allows one to sense a multitude of key characteristics including structural, electrical and chemical information. First, we demonstrate the capability of a biased AFM tip to perform field-induced ionic migration in thin (cathode) films and its diagnosis through the observation of the local resistance change. The latter is ascribed to the internal rearrangement of Li-ions under the effect of a strong and localized electric field. Second, the combination of C-AFM and SIMS is used to correlate electrical conductivity and local chemistry in different cathodes for application in ASB. Finally, a promising starting point towards quantitative electrochemical information starting from C-AFM is indicated.



2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuaifeng Lou ◽  
Qianwen Liu ◽  
Fang Zhang ◽  
Qingsong Liu ◽  
Zhenjiang Yu ◽  
...  

Abstract Interfacial issues commonly exist in solid-state batteries, and the microstructural complexity combines with the chemical heterogeneity to govern the local interfacial chemistry. The conventional wisdom suggests that “point-to-point” ion diffusion at the interface determines the ion transport kinetics. Here, we show that solid-solid ion transport kinetics are not only impacted by the physical interfacial contact but are also closely associated with the interior local environments within polycrystalline particles. In spite of the initial discrete interfacial contact, solid-state batteries may still display homogeneous lithium-ion transportation owing to the chemical potential force to achieve an ionic-electronic equilibrium. Nevertheless, once the interior local environment within secondary particle is disrupted upon cycling, it triggers charge distribution from homogeneity to heterogeneity and leads to fast capacity fading. Our work highlights the importance of interior local environment within polycrystalline particles for electrochemical reactions in solid-state batteries and provides crucial insights into underlying mechanism in interfacial transport.



Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1012
Author(s):  
Takuya Mabuchi ◽  
Koki Nakajima ◽  
Takashi Tokumasu

Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this study provide insights into the correlation between the nanoscopic structures of ion solvation and the dynamics of Li-ion transport in polymer electrolytes.



Author(s):  
Shi Wang ◽  
Xiang-Chun Li ◽  
Tao Cheng ◽  
Yuan-Yuan Liu ◽  
Qiange Li ◽  
...  

Covalent organic frameworks (COFs) with well-tailored channels have the potential to efficiently transport ions yet remain to be explored. The ion transport capability is generally limited due to the lack...



2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000187-000191
Author(s):  
Katsuya Teshima ◽  
Hajime Wagata ◽  
Shuji Oishi

All-solid-state lithium-ion rechargeable batteries (LIBs) consisting of solid electrolyte materials have attracted a number of research interests because no use of organic liquid electrolyte increases packaging density and intrinsic safety of LIB, which contribute the development on environmentally-friendly automobiles such as electric vehicle (EV), hybrid vehicle (HV), and plug-in hybrid vehicle (HEV), in addition to efficient utilization of electric energy in smart grid. Among various solid electrolytes, inorganic electrolyte materials have achieved relatively high lithium-ion conductivity and better stability at an ambient atmosphere. Nevertheless, there is a drawback that is relatively high internal resistance owing to relatively slow Li ion movement caused by low crystallinity of materials, scattering at interfaces such as current collector/electrode active materials and electrode active materials/electrolyte materials. In this context, we have proposed a concept, all-crystal-state LIB, in which all the component materials have high crystallinity and those interfaces are effective for Li ion diffusion. Here, we present the fabrication of oxide crystals and crystal layers via flux method and flux coating. Flux method is one of the solution processes in which idiomorphic highly crystalline materials can be obtained under the melting point of the target ones. In addition, it provides simple, low-cost and environmentally-benign pathway compared to conventional solid-state-reaction method. Flux coating method is developed to fabricate high-quality crystal layers (films) on various substrates. High-quality crystals and crystal layers of cathode, anode and electrolyte materials were successfully fabricated.



2020 ◽  
Vol 30 (14) ◽  
pp. 1910362
Author(s):  
Tanner Hamann ◽  
Lei Zhang ◽  
Yunhui Gong ◽  
Griffin Godbey ◽  
Jack Gritton ◽  
...  


2020 ◽  
Vol 4 (4) ◽  
pp. 1164-1173 ◽  
Author(s):  
Zhen Li ◽  
Zhi-Wei Liu ◽  
Zhen-Jie Mu ◽  
Chen Cao ◽  
Zeyu Li ◽  
...  

Two new imidazolium-based cationic COFs were synthesized and employed as all-solid electrolytes, and exhibited high lithium ion conductivity at high temperature. The assembled Li-ion battery displays preferable battery performance at 353 K.



Sign in / Sign up

Export Citation Format

Share Document