CO2 conversion to methanol on Cu(i) oxide nanolayers and clusters: an electronic structure insight into the reaction mechanism

2015 ◽  
Vol 17 (16) ◽  
pp. 11088-11094 ◽  
Author(s):  
Ellie L. Uzunova ◽  
Nicola Seriani ◽  
Hans Mikosch

The CO2 hydrogenation to methanol using dissociated water as the hydrogen source proceeds via stable carboxyl, formic acid and formaldehyde intermediates.

2021 ◽  
pp. 130856
Author(s):  
Milton Chai ◽  
Sajad Razavi Bazaz ◽  
Rahman Daiyan ◽  
Amir Razmjou ◽  
Majid Ebrahimi Warkiani ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (36) ◽  
pp. 20653-20663
Author(s):  
Johanna Eichhorn ◽  
Simon P. Lechner ◽  
Chang-Ming Jiang ◽  
Giulia Folchi Heunecke ◽  
Frans Munnik ◽  
...  

The (opto)electronic properties of Ta3N5 photoelectrodes are often dominated by defects, but precise control of these defects provides new insight into the electronic structure, photocarrier transport, and photoelectrochemical function.


2017 ◽  
Vol 19 (5) ◽  
pp. 3498-3505 ◽  
Author(s):  
Kenichi Koizumi ◽  
Katsuyuki Nobusada ◽  
Mauro Boero

Reaction mechanism of CO molecules onto a Cu/CeO2 surface and morphological changes.


2014 ◽  
Vol 70 (12) ◽  
pp. 3212-3225 ◽  
Author(s):  
Tiila-Riikka Kiema ◽  
Rajesh K. Harijan ◽  
Malgorzata Strozyk ◽  
Toshiyuki Fukao ◽  
Stefan E. H. Alexson ◽  
...  

Crystal structures of human mitochondrial 3-ketoacyl-CoA thiolase (hT1) in the apo form and in complex with CoA have been determined at 2.0 Å resolution. The structures confirm the tetrameric quaternary structure of this degradative thiolase. The active site is surprisingly similar to the active site of theZoogloea ramigerabiosynthetic tetrameric thiolase (PDB entries 1dm3 and 1m1o) and different from the active site of the peroxisomal dimeric degradative thiolase (PDB entries 1afw and 2iik). A cavity analysis suggests a mode of binding for the fatty-acyl tail in a tunnel lined by the Nβ2–Nα2 loop of the adjacent subunit and the Lα1 helix of the loop domain. Soaking of the apo hT1 crystals with octanoyl-CoA resulted in a crystal structure in complex with CoA owing to the intrinsic acyl-CoA thioesterase activity of hT1. Solution studies confirm that hT1 has low acyl-CoA thioesterase activity for fatty acyl-CoA substrates. The fastest rate is observed for the hydrolysis of butyryl-CoA. It is also shown that T1 has significant biosynthetic thiolase activity, which is predicted to be of physiological importance.


Author(s):  
Hakan Sezgin Sayiner ◽  
Fatma Genç ◽  
Fatma Kandemirli

Drug interactions can have desired, reduced or unwanted effects. The probability of interactions increases with the number of drugs taken. Side effects or therapeutic drug interactions can increase or decrease the effects of one or two drugs. Failure may result from clinically meaningful interactions. Clinicians rarely use foreseeable drug-drug interactions to produce the desired therapeutic effect. For example, when we consider two drugs each causing, peripheral neuropathy increases the likelihood of neuropathy occurrence. In this study geometry optimizations of tigecycline and sulbactam drugs and their combination have been carried out with the evaluation of B3LYP/6-311G (d, p), B3LYP/6-311G (2d, 2p) levels, and the reaction mechanism at semi empirical PM6, which was parameterized for biochemical systems and B3LYP/6-311G (d,p) levels. The main objective of the study is to understand the interaction ofsulbactam with tigecycline, to describe energetic condition of bond formation and electronic structure (orders of the broken and formed bonds). The reaction mechanisms of sulbactam with tigecycline have been studied as stepwise and concerted mechanisms using semi-empircal PM6 and B3LYP/6-311G (d,p) levels.


2018 ◽  
Vol 83 (5) ◽  
pp. 2904-2911 ◽  
Author(s):  
Chitturi Bhujanga Rao ◽  
Jingwen Yuan ◽  
Qian Zhang ◽  
Rui Zhang ◽  
Ning Zhang ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Olha Zhak ◽  
Oksana Karychort ◽  
Volodymyr Babizhetskyy ◽  
Chong Zheng

Abstract The title compound was prepared from the pure elements by sintering. The crystal structure was investigated by means of powder X-ray diffraction data. Ho5Pd19P12 exhibits the hexagonal Ho5Ni19P12-type structure with space group P 6 ‾ 2 m $P‾{6}2m$ , a = 13.1342(2), c = 3.9839(1) Å, R I = 0.060, R p = 0.080. The crystal structure can be described as a combination of two types of the structural units, [HoPd6P3] and [Ho3Pd10P6], respectively, mutually displaced by 1/2 along the crystallographic c axis. Quantum chemical calculations have been performed to analyze the electronic structure and provide deeper insight into the structure-property relationships. The results of the quantum chemical calculations indicate that the material features metallic bonding between Ho and Pd and covalent bonding between Pd and P.


Sign in / Sign up

Export Citation Format

Share Document