scholarly journals Theoretical study of the dark photochemistry of 1,3-butadiene via the chemiexcitation of Dewar dioxetane

2015 ◽  
Vol 17 (28) ◽  
pp. 18653-18664 ◽  
Author(s):  
Pooria Farahani ◽  
Marcus Lundberg ◽  
Roland Lindh ◽  
Daniel Roca-Sanjuán

We report on the molecular basis of excited-state chemical processes that are induced by intramolecular chemiexcitation rather than by irradiation.

Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


1990 ◽  
Vol 55 (8) ◽  
pp. 1891-1895 ◽  
Author(s):  
Peter Ertl

Twisting of the NMe2 group in p-N,N-dimethylaminobenzonitrile (DMABN) was investigated using AM1 semiempirical method with configuration interaction. Effect of polar media was considered by placing + and - charge centers ("sparkles") at appropriate places opposite the molecule. Optimized ground state geometry of DMABN is slightly twisted with the lowest vertical excited state of 1B character. As the polarity of media increases and/or the - NMe2 group twists, the symmetric 1A excited state having considerable charge separation becomes energetically favorable. Anomalous long-wavelength emission of DMABN comes from this state.


2014 ◽  
Vol 887-888 ◽  
pp. 931-934
Author(s):  
Hong Bin Chen ◽  
Ying Zhu ◽  
Jie Wu

Our theoretical study aims to the way of obtain C3H4O+ fragments laser-induced by Cycloheptanone ion (C7H12O+ ) excited state and gives out a result with proved and directed significance for the corresponding experiments. Using the CIS(Configuration Interaction with Single Substitute) method, calculated Cycloheptanone ion excited state structure and vibrational frequencies.


2003 ◽  
Vol 137 (1-3) ◽  
pp. 1095-1096 ◽  
Author(s):  
Z.M. Su ◽  
Y.H. Kan ◽  
Z.H. Huang ◽  
Y. Liao ◽  
Y.Q. Qiu ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
D. Mayer ◽  
F. Lever ◽  
D. Picconi ◽  
J. Metje ◽  
S. Alisauskas ◽  
...  

AbstractThe conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.


Sign in / Sign up

Export Citation Format

Share Document