Theoretical insight on reactivity trends in CO2 electroreduction across transition metals

2016 ◽  
Vol 6 (4) ◽  
pp. 1042-1053 ◽  
Author(s):  
Sneha A. Akhade ◽  
Wenjia Luo ◽  
Xiaowa Nie ◽  
Aravind Asthagiri ◽  
Michael J. Janik

Density Functional Theory (DFT) based models have been widely applied towards investigating and correlating the reaction mechanism of CO2 electroreduction (ER) to the activity and selectivity of potential electrocatalysts.

RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18246-18251
Author(s):  
Selçuk Eşsiz

A computational study of metal-free cyanomethylation and cyclization of aryl alkynoates with acetonitrile is carried out employing density functional theory and high-level coupled-cluster methods, such as [CCSD(T)].


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1663
Author(s):  
Laixing Luo ◽  
Xing Zheng ◽  
Jianye Wang ◽  
Wu Qin ◽  
Xianbin Xiao ◽  
...  

Biomass chemical looping gasification (CLG) is a novel gasification technology for hydrogen production, where the oxygen carrier (OC) transfers lattice oxygen to catalytically oxidize fuel into syngas. However, the OC is gradually reduced, showing different reaction activities in the CLG process. Fully understanding the CLG reaction mechanism of fuel molecules on perfect and reduced OC surfaces is necessary, for which the CLG of ethanol using Fe2O3 as the OC was introduced as the probe reaction to perform density functional theory calculations to reveal the decomposition mechanism of ethanol into the synthesis gas (including H2, CH4, ethylene, formaldehyde, acetaldehyde, and CO) on perfect and reduced Fe2O3(001) surfaces. When Fe2O3(001) is reduced to FeO0.375(001), the calculated barrier energy decreases and then increases again, suggesting that the reduction state around FeO(001) favors the catalytic decomposition of ethanol to produce hydrogen, which proves that the degree of reduction has an important effect on the CLG reaction.


2021 ◽  
pp. 014459872199495
Author(s):  
Songjian Du ◽  
Tingting Li ◽  
Xinwei Wang ◽  
Liqiang Zhang ◽  
Zhengda Yang ◽  
...  

Hydrodesulfurization reaction, as the last step of hydrothermal cracking reaction, is of great significance for the reduction of viscosity and desulfurization of heavy oil. Based on Density Functional Theory and using Dmol3 module of Materials Studio, this research simulated the adsorption and hydrodesulfurization of thiophene on Ni2P (001) surface, and discussed the hydrodesulfurization reaction mechanism of thiophene on Ni2P (001) surface. It was found that the direct hydrodesulfurization of thiophene had more advantages than the indirect hydrodesulfurization of thiophene. Finally, the optimal reaction path was determined: C4H4S+H2→C4H6.


Author(s):  
Houyu Zhu ◽  
Xin Li ◽  
Naiyou Shi ◽  
Xuefei Ding ◽  
Zehua Yu ◽  
...  

Ni/ZnO catalysts have been well recognized by industry and academia for exhibiting excellent desulfurization activities. However, intrinsic reaction mechanism on Ni active center is still obscure. Herein, we performed periodic...


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34319-34326 ◽  
Author(s):  
Lianyang Zhang ◽  
Junhui Jiang ◽  
Wei Shi ◽  
Shengjie Xia ◽  
Zheming Ni ◽  
...  

The hydrogenation mechanism of nitrobenzene to aniline on Pd3/Pt(111) surface preferentially follows the direct route and fits best the Jackson reaction mechanism (mechanism B).


2017 ◽  
Vol 19 (33) ◽  
pp. 22344-22354 ◽  
Author(s):  
Sajjad Ali ◽  
Tian Fu Liu ◽  
Zan Lian ◽  
Bo Li ◽  
Dang Sheng Su

The mechanism of CO oxidation by O2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory.


2021 ◽  
Author(s):  
Xin Zhang ◽  
Liu Leo Liu

We report herein the synthesis, characterization, and coordination chemistry of a free N-aluminylene, namely a carbazolylaluminylene 2b. This species is prepared via a reduction reaction of the corresponding carbazolyl aluminium diiodide. The coordination behavior of 2b towards transition metal centers (W, Cr) is shown to afford a series of novel aluminylene complexes 3-6 with diverse coordination modes. We demonstrate that the Al center in 2b can behave as: 1. a σ-donating and doubly π-accepting ligand; 2. a σ-donating, σ-accepting and π-accepting ligand; and 3. a σ-donating and doubly σ-accepting ligand. Additionally, we show ligand exchange at the aluminylene center providing access to the modulation of electronic properties of transition metals without changing the coordinated atoms. Investigations of 2b with IDippCuCl (IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) show an unprecedented aluminylene-alumanyl transformation leading to a rare terminal Cu-alumanyl complex 8. The electronic structures of such complexes and the mechanism of the aluminylene-alumanyl transformation are investigated through density functional theory (DFT) calculations.


Author(s):  
Christophe Gourlaouen ◽  
Benjamin Schweitzer ◽  
Chantal Daniel

The ability of [Ru(bpy)2(bpym)]2+ (bpy = 2,2’-biprydine; bpym = 2,2’-bipyrimidine) at probing specifically heavy cations has been investigated by means of density functional theory for transition metals, group 12 elements...


Sign in / Sign up

Export Citation Format

Share Document