A mononuclear iron(ii) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition

2016 ◽  
Vol 45 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Mark B. Bushuev ◽  
Denis P. Pishchur ◽  
Vladimir A. Logvinenko ◽  
Yuri V. Gatilov ◽  
Ilya V. Korolkov ◽  
...  

A mononuclear iron(ii) pyrimidine-based complex shows remarkable spin crossover properties and unprecedented thermal robustness.

2016 ◽  
Vol 45 (28) ◽  
pp. 11267-11271 ◽  
Author(s):  
F. Pointillart ◽  
X. Liu ◽  
M. Kepenekian ◽  
B. Le Guennic ◽  
S. Golhen ◽  
...  

A thermal and photo-induced spin transition in a tetrathiafulvalene-based Fe(ii) complex.


2017 ◽  
Vol 19 (26) ◽  
pp. 16955-16959 ◽  
Author(s):  
Mark B. Bushuev ◽  
Elena B. Nikolaenkova ◽  
Viktor P. Krivopalov

Non-isothermal magnetic studies can be used to estimate the activation energy of cooperative spin transition.


2019 ◽  
Vol 5 (1) ◽  
pp. 10 ◽  
Author(s):  
Hiroaki Hagiwara

A novel mononuclear iron(II) complex with a linear hexadentate N6 ligand, containing two 1,2,3-triazole moieties, [Fe(L2-3-2Ph)](AsF6)2 (1), was synthesized (L2-3-2Ph = bis[N-(1-Phenyl-1H-1,2,3-triazol-4-yl)methylidene-2-aminoethyl]-1,3-propanediamine). Variable-temperature magnetic susceptibility measurements revealed a gradual one-step spin crossover (SCO) between the high-spin (HS, S = 2) and low-spin (LS, S = 0) states above room temperature (T1/2 = 468 K). The spin transition was further confirmed by differential scanning calorimetry (DSC). A single-crystal X-ray diffraction study showed that the complex was in the LS state (S = 0) at room temperature (296 K). In the crystal lattice, a three-dimensional (3D) supramolecular network was formed by intermolecular CH⋯ and – interactions of neighboring complex cations [Fe(L2-3-2Ph)]2+. AsF6− ions were located interstitially in the 3D network of complex cations, with no solvent-accessible voids. The crystal structure at 448 K (mixture of HS and LS species) was also successfully determined thanks to the thermal stability of the solvent-free crystal.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 276 ◽  
Author(s):  
Tomoe Matsuyama ◽  
Keishi Nakata ◽  
Hiroaki Hagiwara ◽  
Taro Udagawa

A mononuclear iron(II) complex bearing the linear pentadentate N5 Schiff-base ligand containing two 1,2,3-triazole moieties and the MeCN monodentate ligand, [FeIIMeCN(L3-Me-3Ph)](BPh4)2·MeCN·H2O (1), have been prepared (L3-Me-3Ph = bis(N,N′-1-Phenyl-1H-1,2,3-triazol-4-yl-methylideneaminopropyl)methylamine). Variable-temperature magnetic susceptibility measurements revealed an incomplete one-step spin crossover (SCO) from the room-temperature low-spin (LS, S = 0) state to a mixture of the LS and high-spin (HS, S = 2) species at the higher temperature of around 400 K upon first heating, which is irreversible on the consecutive cooling mode. The magnetic modulation at around 400 K was induced by the crystal-to-amorphous transformation accompanied by the loss of lattice MeCN solvent, which was evident from powder X-ray diffraction (PXRD) studies and themogravimetry. The single-crystal X-ray diffraction studies showed that the complex is in the LS state (S = 0) between 296 and 387 K. In the crystal lattice, the complex-cations and B(1)Ph4− ions are alternately connected by intermolecular CH···π interactions between the methyl group of the MeCN ligand and phenyl groups of B(1)Ph4− ions, forming a 1D chain structure. The 1D chains are further connected by P4AE (parallel fourfold aryl embrace) interactions between two neighboring complex-cations, constructing a 2D extended structure. B(2)Ph4− ions and MeCN lattice solvents exist in the spaces of the 2D layer. DFT calculations verified that the 1,2,3-triazole-containing ligand L3-Me-3Ph gives a stronger ligand field around the octahedral coordination environment of the iron(II) ion than the analogous imidazole-containing ligand H2L2Me (= bis(N,N′-2-methylimidazol-4-yl-methylideneaminopropyl)methylamine) of the known compound [FeIIMeCN(H2L2Me)](BPh4)1.5·Cl0.5·0.5MeCN (2) reported by Matsumoto et al. (Nishi, K.; Fujinami, T.; Kitabayashi, A.; Matsumoto, N. Tetrameric spin crossover iron(II) complex constructed by imidazole⋯chloride hydrogen bonds. Inorg. Chem. Commun. 2011, 14, 1073–1076), resulting in the much higher spin transition temperature of 1 than that of 2.


2019 ◽  
Vol 48 (41) ◽  
pp. 15515-15520 ◽  
Author(s):  
Sharon E. Lazaro ◽  
Adil Alkaş ◽  
Seok J. Lee ◽  
Shane G. Telfer ◽  
Keith S. Murray ◽  
...  

Two iron(iii) complexes, [Fe(qsal-X)2]OTs·nH2O, are found to exhibit abrupt spin crossover with the spin transition temperature substituent dependent, and X⋯O halogen bonds linking the spin centres.


Author(s):  
Nikita Konstantinov ◽  
Arthur Tauzin ◽  
Ulrich Nguetchuissi Noumbé ◽  
Diana Dragoe ◽  
Bohdan Kundys ◽  
...  

An opto-electronic switching device made from an evaporated spin crossover thin film over a graphene sensor is presented. The electrical transduction of both temperature and light-induced reversible spin transitions are demonstrated.


2013 ◽  
Vol 42 (28) ◽  
pp. 10144 ◽  
Author(s):  
Guo-Ping Shen ◽  
Li Qi ◽  
Lei Wang ◽  
Yan Xu ◽  
Jing-Jing Jiang ◽  
...  

2014 ◽  
Vol 20 (19) ◽  
pp. 5613-5618 ◽  
Author(s):  
Kevin D. Murnaghan ◽  
Chiara Carbonera ◽  
Loic Toupet ◽  
Michael Griffin ◽  
Marinela M. Dîrtu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document